

Copyright 2023 All Right Reserved By TC-tea website

 1 / 41

INT305 note
(Machine Learning)

1 Introduction

1.1 Supervised learning (much of this course)

1.1.1 KNN

• Nearest neighbours sensitive to noise or mis-labelled data (“class noise”).

• Smooth by having k nearest neighbours vote.

• Balancing hyperparameter 𝑘

➢ Optimal choice of 𝑘 depends on number of data points 𝑛.

➢ Nice theoretical properties if 𝑘 → ∞ and 𝑘/𝑛 → 0.

➢ Rule of thumb: choose 𝑘 < 𝑛.

➢ We can choose 𝑘 using validation set.

2 Linear Methods for Regression, Optimization

Linear regression exemplifies recurring themes of this course:

• Choose a model and a loss function

• Formulate an optimization problem

• Solve the minimization problem using one of two strategies

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 2 / 41

➢ Direct solution (set derivatives to zero)

➢ Gradient descent

• Vectorize the algorithm, i.e. represents in terms of linear algebra

• Make a linear model more powerful using features

• Improve the generalization by adding a regularizer

2.1 Supervised Learning Setup

In supervised learning:

• There is input 𝐱 ∈ 𝒳, typically a vector of features (or covariates)

• There is target 𝑡 ∈ 𝒯, (also called response, outcome, output, class)

• Objective is to learn a function 𝑓: 𝒳 → 𝒯 such that 𝑡 ≈ 𝑦 = 𝑓(𝐱) based on some data 𝒟 = {(𝐱(𝑖) ,𝑡(𝑖)) 𝑓𝑜𝑟 𝑖

= 1, 2, ⋯ , 𝑁}

2.2 Linear Regression

2.2.1 Linear Regression Model

Model: In linear regression, we use a linear function of the features 𝐱 = 𝑥1, ⋯ , 𝑥𝐷 ∈ ℝ𝐷 to make predictions 𝑦

of the target value 𝑡 ∈ ℝ:

𝑦 is the prediction

𝐰 is the weights

𝑏 is the bias (or intercept)

𝐰 and 𝑏 together are the parameters

We hope that our prediction is close to the target: 𝑦 ≈ 𝑡.

• If we have only 1 feature: 𝑦 = 𝑤𝑥 + 𝑏 where 𝑤, 𝑥, 𝑏 ∈ ℝ.

• 𝑦 is linear in 𝑥.

• If we have only 𝐷 features: 𝑦 = 𝐰⊺𝐱 + 𝑏 where 𝐰, 𝐱 ∈ ℝ𝐷 , 𝑏 ∈ ℝ

• 𝑦 is linear in 𝐱.

2.2.2 Linear Regression workflow

We have a dataset 𝒟 = {(𝐱(𝑖) ,𝑡(𝑖)) 𝑓𝑜𝑟 𝑖 = 1, 2, ⋯ , 𝑁}:

• 𝐱(𝑖) = (𝑥1
(𝑖), 𝑥2

(𝑖), ⋯ 𝑥𝐷
(𝑖))⊺ ∈ ℝ𝐷 are the inputs (e.g. age, height)

• 𝑡(𝑖) ∈ ℝ is the target or response (e.g. income)

• Predict 𝑡(𝑖) with a linear function of 𝐱(𝑖):

• 𝑡(𝑖) ≈ 𝑦(𝑖) = 𝐰⊺𝐱(𝑖) + 𝑏

• Different 𝐰, 𝑏 define different lines.

• We want the “best” line 𝐰, 𝑏 .

2.2.3 Linear Regression Loss Function

• A loss function ℒ(𝑦,𝑡) defines how bad it is if, for some example 𝐱, the algorithm predicts 𝑦, but the target is

actually 𝑡.

• Squared error loss function:

• 𝑦 − 𝑡 is the residual, and we want to make this small in magnitude.

• The 1/2 factor is just to make the calculations convenient.

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 3 / 41

• Cost function: loss function averaged over all training examples.

2.2.3 Linear Regression Vectorization

But if we expand 𝑦(𝑖), it will get messy:

Vectorize algorithms by expressing them in terms of vectors and matrices:

Python code:

Organize all the training examples into a design matrix 𝐗 with one row per training example, and all the targets

into the target vector t:

Computing the predictions for the whole dataset:

Computing the squared error cost across the whole dataset:

We can also add a column of 1’s to design matrix, combine the bias and the weights, and conveniently write:

Then, our predictions reduce to 𝐲 = 𝐗𝐰.

2.3 Direct Solution •

2.3.1 Linear Algebra •

• We seek 𝐰 to minimize ||𝐗𝐰 – 𝐭||2, or equivalently ||𝐗𝐰 − 𝐭||

• range 𝐗 = {𝐗𝐰|𝐰 ∈ ℝ𝐷} is a 𝐷-dimensional subspace of ℝ𝑁

• Recall that the closest point 𝐲∗= 𝐗𝐰∗in subspace range(𝐗) of ℝ𝑁 to arbitrary point 𝐭 ∈ ℝ𝑁 is found by orthogonal

projection.

• We have (𝐲∗ − 𝐭) ⊥ 𝐗𝐰, ∀𝐰 ∈ ℝ𝐷

• 𝐲∗ is the closest point to 𝐭

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 4 / 41

2.3.2 Calculus •

• Partial derivative: derivative of a multivariate function with respect to one of its arguments.

• To compute, take the single variable derivative, pretending the other arguments are constant.

• Example: partial derivatives of the prediction 𝑦.

• For loss derivatives, apply the chain rule:

• For cost derivatives, use linearity and average over data points:

• Minimum must occur at a point where partial derivative are zero.

• We call the vector of partial derivatives the gradient.

• Thus, the “gradient of 𝑓: ℝ𝐷 → ℝ”, denoted ∇𝑓(𝐰), is:

• The gradient points in the direction of the greatest rate of increase.

• Analogue of second derivative (the “Hessian” matrix):

• We seek 𝐰 to minimize 𝒥(𝐰) = ||𝐗𝐰 – 𝐭||2 / 2

• Taking the gradient with respect to 𝐰 we get:

• Linear regression is one of only a handful of models in this course that permit direct solution.

2.4 Polynomial Feature Mapping

2.4.1 Introduction

The relation between the input and output may not be linear. But we can still use linear regression by mapping

the input features to another space using feature mapping (or basis expansion). 𝜑 (𝐱) : ℝ𝐷 → ℝ𝑑 and treat the

mapped feature (in ℝ𝑑) as the input of a linear regression procedure.

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 5 / 41

Find the data using a degree-M polynomial function of the form:

• Here the feature mapping is 𝜑(𝑥) = [1, 𝑥, 𝑥2, … , 𝑥𝑀]⊺.

• We can use linear regression to find 𝐰, since 𝑦 = 𝜑(𝑥)⊺𝐰 is linear with 𝑤0, 𝑤1, …, 𝑤M

2.4.2 Model Complexity and Generalization

• Underfitting (M=0): model is too simple – does not fit the data.

• Overfitting (M=9): model is too complex – fits perfectly.

2.4.3 L2 Regularization

Regularizer: a function that quantifies how much we prefer one hypothesis VS another.

• We can encourage the weights to be small by choosing as our regularizer the 𝐿2 penalty.

(To be precise, the 𝐿2 norm is Euclidean distance, we’re regularizing the squared 𝐿2 norm)

• The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

• If you fit training data poorly, 𝒥 is large. If your optimal weights have high values, ℛ is large.

• Large 𝜆 penalize wight values more.

• Like 𝑀, 𝜆 is a hyperparameter we can tune with a validation set.

2.4.4 L2 Regularized Least Squares: Ridge regression

For the least squares problem, we have

• When 𝜆 > 0 (with regularization), regularized cost gives:

• The case 𝜆 = 0 (no regularization) reduces to least squares solution!

2.5 Gradient Descent

2.5.1 Concepts

• Many times, we do not have a direct solution: Taking derivatives of 𝒥 w.r.t 𝐰 and setting them to 0 doesn’t have

an explicit solution.

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 6 / 41

• Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is

met.

• We initialize the weights to something reasonable (e.g., all zeros) and repeatedly adjust them in the direction of

steepest descent.

(就是等到斜率为 0 即为最优解)

• Observe:

➢ If 𝜕𝒥/𝜕𝑤𝑗 > 0, then increasing 𝑤𝑗 increases 𝒥.

➢ If 𝜕𝒥/𝜕𝑤𝑗 < 0, then increasing 𝑤𝑗 decreases 𝒥

• The following update always decreases the cost function for small enough 𝛼 (unless 𝜕𝒥/𝜕𝑤𝑗 = 0):

• 𝛼 > 0 is a learning rate (or step size). The larger it is, the faster 𝐰 changes (but values are typically small).

• This gets its name from the gradient:

• Update rule in vector form:

• And for linear regression we have:

• So gradient descent updates 𝐰 in the direction of fastest decrease.

• Observe that once it converges, we get a critical point.

2.5.2 Gradient Descent for Linear Regression

• Why gradient descent, if we can find the optimum directly?

➢ gradient descent can be applied to a much broader set of models

➢ gradient descent can be easier to implement than direct solutions

➢ For regression in high-dimensional space, gradient descent is more efficient than direct solution

2.5.3 Gradient Descent under the L2 Regularization

• The gradient descent update to minimize the 𝐿2 regularized cost 𝒥 + 𝜆ℛ results in weight decay:

2.5.4 Learning Rate (Step Size)

• In gradient descent, the learning rate 𝛼 is a hyperparameter we need to tune.

• Good values are typically between 0.001 and 0.1.

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 7 / 41

• To diagnose optimization problems, it’s useful to look at training curves: plot the training cost as a function of

iteration.

• Warning: in general, it’s very hard to tell from the training curves whether an optimizer has converged. They

can reveal major problems, but they can’t guarantee convergence.

2.5.5 Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example

• Cost of each SGD update is independent of 𝑁!

• SGD can make significant progress before even seeing all the data!

• Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an

unbiased estimate of the batch gradient:

2.5.6 Mini-batch Stochastic Gradient Descent

• Problems with using single training example to estimate gradient:

➢ Variance in the estimate may be high

➢ We can’t exploit efficient vectorized operations

• Compromise approach:

➢ Compute the gradients on a randomly chosen medium-sized set of training examples ℳ ⊂ {1, ⋯ , 𝑁}

called a mini-batch.

• Stochastic gradients computed on larger mini-batches have smaller variance.

• The mini-batch size |ℳ| is a hyperparameter that needs to be set.

➢ Too large: requires more compute: e.g., it takes more memory to store the activations, and longer to

compute each gradient update

➢ Too small: can’t exploit vectorization, has high variance

➢ A reasonable value might be |ℳ| = 100.

2.5.7 Comparation

• Batch gradient descent moves directly downhill (locally speaking).

• SGD takes steps in a noisy direction, but moves downhill on average.

▲ Batch Gradient Descent，全批量梯度下降，是最原始的形式，它是指在每一次迭代时使用所有样本来进行梯度

的更新。优点是全局最优解，易于并行实现；缺点是当样本数目很大时，训练过程会很慢。

▲ Stochastic Gradient Descent，随机梯度下降，是指在每一次迭代时使用一个样本来进行参数的更新。优点是训

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 8 / 41

练速度快；缺点是准确度下降，并且可能无法收敛或者在最小值附近震荡。

▲ Mini-Batch Gradient Descent，小批量梯度下降，是对上述两种方法的一个折中办法。它是指在每一次迭代时使

用一部分样本来进行参数的更新。这种方法兼顾了计算速度和准确度。

3 Linear Classifiers, Logistic Regression, Multiclass Classification

3.1 Binary linear classification

• Classification: given a 𝐷-dimensional input 𝐱 ∈ ℝ𝐷 predict a discrete-valued target

• Binary: predict a binary target 𝑡 ∈ {0,1}

➢ Training examples with 𝑡 = 1 are called positive examples, and training examples with 𝑡 = 0 are called

negative examples.

➢ 𝑡 ∈ {0,1} or 𝑡 ∈ {−1, +1} is for computational convenience.

• Linear: model prediction 𝑦 is a linear function of 𝐱, followed by a threshold 𝑟:

• Eliminating the threshold: We can assume without loss of generality (WLOG) that the threshold 𝑟 = 0

• Eliminating the bias: Add a dummy feature 𝑥0 which always takes the value 1. the weight 𝑤0 = 𝑏 is equivalent

to a bias (same as linear regression)

• Simplified model: receive input 𝐱 ∈ ℝ𝐷+1 with 𝑥0 = 1

• Example:

• Suppose this is our training set, with the dummy feature 𝑥0 included.

• Which conditions on 𝑤0, 𝑤1 guarantee perfect classification?

➢ When 𝑥1 = 0, need: 𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 ≥ 0 𝑤0 ≥ 0

➢ When 𝑥1 = 1, need: 𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 < 0 𝑤0 + 𝑤1 < 0

➢ Example solution: 𝑤0 = 1, 𝑤1 = −2

• Training examples are points

• Weights (hypotheses) 𝐰 can be represented by half-spaces: 𝐻+ = {𝐱: 𝐰⊺𝐱 ≥ 0} , 𝐻− = {𝐱: 𝐰⊺𝐱 < 0}

• The boundary is the decision boundary: {𝐱: 𝐰⊺𝐱 = 0}

• If the training examples can be perfectly separated by a linear decision rule, we say data is linearly separable.

• Weights (hypotheses) 𝐰 are points

• Each training example 𝐱 specifies a half-space 𝐰 must lie in to be correctly classified: 𝐰⊺𝐱 ≥ 0 if 𝑡 = 1

➢ 𝑥0 = 1, 𝑥1 = 0, 𝑡 = 1 (𝑤0, 𝑤1) ∈ 𝐰: 𝑤0 ≥ 0

➢ 𝑥0 = 1, 𝑥1 = 1, 𝑡 = 0 (𝑤0, 𝑤1) ∈ 𝐰: 𝑤0 + 𝑤1 < 0

• The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 9 / 41

feasible, otherwise it is infeasible.

3.2 Towards Logistic Regression

Define loss function then try to minimize the resulting cost function

Attempt 1: 0-1 loss

• Usually, the cost 𝒥 is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate:

• Minimum of a function will be at its critical points, use Chain rule to find the critical point of 0-1 loss

• 𝜕𝓛0−1/𝜕𝑧 is zero everywhere it’s defined:

➢ 𝜕𝓛0−1/𝜕𝑤𝑗 = 0 means that changing the weights by a very small amount probably has no effect on the loss.

➢ Almost any point has 0 gradient!

Attempt 2: Linear Regression

• Doesn’t matter that the targets are actually binary. Treat them as continuous values.

• For this loss function, it makes sense to make final predictions by thresholding 𝑧 at 1/2

• The loss function hates when you make correct predictions with high confidence!

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 10 / 41

• It 𝑡 = 1, it’s more unhappy about 𝑧 = 10 than 𝑧 = 0.

Attempt 3: Logistic Activation Function

• 𝜎−1(𝑦) = log(𝑦/(1 − 𝑦)) is called the logit.

• A linear model with a logistic nonlinearity is known as log-linear:

• Used in this way, 𝜎 is called an activation function.

(plot of ℒSE as a function of 𝑧, assuming 𝑡 = 1)

• For 𝑧 ≪ 0, we have 𝜎(𝑧) ≈ 0.

• 𝜕𝓛/𝜕𝑧 ≈ 0 (check) ➔𝜕𝓛/𝜕𝑤𝑗 ≈ 0 ➔ derivative w.r.t. 𝑤𝑗 is small ➔ 𝑤𝑗 is like a critical point.

• If the prediction is really wrong, you should be far from a critical point (which is your candidate solution).

• Because 𝑦 ∈ 0, 1 , we can interpret it as the estimated probability that 𝑡 = 1. If 𝑡 = 0, then we want to heavily

penalize 𝑦 ≈ 1.

• Cross-entropy loss (aka log loss) captures this intuition:

• The logistic loss is a convex function in 𝐰, so let’s consider the gradient descent method.

➢ Recall: we initialize the weights to something reasonable and repeatedly adjust them in the direction of

steepest descent.

➢ A standard initialization is 𝐰 = 0.

Gradient descent (coordinate-wise) update to find the weights of logistic regression:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 11 / 41

Gradient descent updates for Linear regression and Logistic regression (both examples of generalized linear models):

3.3 Multiclass Classification and Softmax Regression

3.3.1 Multiclass Classification

• Classification tasks with more than two categories

• Targets form a discrete set {1, ⋯ ,𝐾}.

• It’s often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

• We can start with a linear function of the inputs.

• Now there are 𝐷 input dimensions and 𝐾 output dimensions, so we need 𝐾 × 𝐷 weights, which we arrange as

a weight matrix 𝐖.

• Also, we have a 𝐾-dimensional vector 𝐛 of biases. Then eliminate the bias 𝐛 by taking 𝐖 ∈ ℝ𝐾×(𝐷+1) and adding

a dummy variable 𝑥0 = 1.

𝐳 = 𝐖𝐱 + 𝐛 or with dummy 𝑥0 = 1 𝐳 = 𝐖𝐱

• We can interpret the magnitude of 𝑧𝑘 as a measure of how much the model prefers 𝑘as its prediction to turn

this linear prediction into a one-hot prediction.

3.3.2 Softmax Regression

• We need to soften our predictions for the sake of optimization.

• We want soft predictions that are like probabilities, i.e., 0 ≤ 𝑦𝑘 ≤ 1 and σ𝑘 𝑦𝑘 = 1.

• A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

➢ Outputs can be interpreted as probabilities (positive and sum to 1)

➢ If 𝑧𝑘 is much larger than the others, then softmax(𝐳)𝑘 ≈ 1 and it behaves like argmax.

• If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

• Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-

entropy function.

• Softmax regression (with dummy 𝑥0 = 1):

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 12 / 41

• Gradient descent updates can be derived for each row of 𝐖:

• Similar to linear/logistic reg (no coincidence) (verify the update)

• Sometimes we can overcome the nonlinear problem with feature maps:

4 SVM, SVM Loss and Softmax Loss

4.1 Optimal Separating Hyperplane

• Concept: A hyperplane that separates two classes and maximizes the distance to the closest point from either

class, i.e., maximize the margin of the classifier.

• Intuitively, ensuring that a classifier is not too close to any data points leads to better generalization on the test

data.

4.1.1 Geometry of Points and Planes

• Recall that the decision hyperplane is orthogonal (perpendicular) to w.

• The vector w* =
𝐖

||𝐖||2
 is a unit vector pointing in the same direction as w.

• The same hyperplane could equivalently be defined in terms of w*

• The (signed) distance of a point x' to the hyperplane is:

4.1.2 Maximizing Margin as an Optimization Problem

• Recall: the classification for the i-th data point is correct when:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 13 / 41

• This can be rewritten as:

• Enforcing a margin of C:

• Max-margin objective:

• Plug in C = 1/||w||2 and simplify:

• Equivalent optimization objective:

4.2 Support Vector Machine

4.2.1 Concepts

• Observe: if the margin constraint is not tight for x(i), we could remove it from the training set and the optimal

w would be the same.

• The important training examples are the ones with algebraic margin 1, and are called support vectors

• Hence, this algorithm is called the (hard) Support Vector Machine (SVM) (or Support Vector Classifier).

• SVM-like algorithms are often called max-margin or large-margin.

4.2.2 Maximizing Margin for Non-Separable Data Points

• Main idea:

• Allow some points to be within the margin or even be misclassified; were present this with slack variables

i.

• But constrain or penalize the total amount of slack.

• Soft margin constraint:

For i ≥ 0:

• Reduce i

• Soft-margin SVM objective:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 14 / 41

•  is a hyperparameter that trades off the margin with the amount of slack

• For  = 0, we'll get w = 0.

• As  -> ∞ we get the hard-margin objective.

• Note: it is also possible to constrain ∑ 
𝑖

𝑖
 instead of penalizing it.

4.2.3 From Margin Violation to Hinge Loss

4.2.4 Multiclass SVM Loss

4.3 Softmax

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 15 / 41

4.4 SVM & Softmax 【深度学习 CV】SVM, Softmax 损失函数_svm 评估函数-CSDN 博客

5 Neural Network and Back Propagation

5.1 Neural Network

Neural Network: without the brain stuff

(Before) Linear score function: 𝑓 = 𝑊𝑥

(Now) 2-layer Neural Network: 𝑓 = 𝑊2max(0, 𝑊1𝑥)

or 3-layer Neural Network: 𝑓 = 𝑊3max(0, 𝑊2max(0, 𝑊1𝑥))

5.1.1 Activation Functions

https://zhtc.one/
https://blog.csdn.net/bcj296050240/article/details/53890704?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169727058816800188557139%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169727058816800188557139&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-53890704-null-null.142%5ev96%5econtrol&utm_term=svm%E5%92%8Csoftmax%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0&spm=1018.2226.3001.4187

Copyright 2023 All Right Reserved By TC-tea website

 16 / 41

Example Feed-forward computation of a Neural Network

5.1.2 Gradient Descent

Example 1:

Example 2:

求导

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 17 / 41

Sigmoid feature:

5.1.3 Gradients for vector

Example:

Always check: The gradient with respect to a

variable should have the same

shape as the variable

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 18 / 41

6 Convolutional Neural Network

6.1 Basic concepts

Preview:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 19 / 41

6.2 Convolutional layer

• Output size:

• Common to zero pad the border:

• Calculation example:

• Conclusion:

6.3 Pooling layer

• Makes the representations smaller and more manageable

• Operates over each activation map independently

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 20 / 41

Max pooling:

6.4 Fully connected layer

• Contains neurons that connect to the entire input volume, as in ordinary Neural Network

6.5 Case study: Models

6.5.1 LeNet-5

6.5.2 AlexNet

6.5.3 ZFNet

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 21 / 41

6.5.4 VCGNet

6.5.5 GoogleNet

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 22 / 41

6.5.6 ResNet

Residual block

7 Decision Trees & Bias-Variance Decomposition

7.1 Decision Trees

• Make predictions by splitting on features according to a tree structure.

• Split continuous features by checking whether that feature is greater than or less than some threshold.

• Decision boundary is made up of axis-aligned planes.

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 23 / 41

7.1.1 Discrete Features

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 24 / 41

7.1.2 Entropy of a Joint Distribution

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 25 / 41

information gain

7.1.3 Example

HY <- -2/7*log2(2/7)-5/7*log2(5/7)

HYL <- -3/4*log2(3/4)-1/4*log2(1/4)

HYR <- -2/3*log2(2/3)-1/3*log2(1/3)

IGS <- HY-(4/7*HYL+3/7*HYR)

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 26 / 41

7.1.4 Decision Trees Construction Algorithm

7.1.5 Decision Trees comparison to some other classifiers

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 27 / 41

7.2 Bias-Variance Decomposition

7.2.1 Basic Setup

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 28 / 41

7.2.2 Bayes Optimality

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 29 / 41

8 Bagging & Boosting

8.1 Bias/Variance Decomposition

We treat predictions y at a query x as a random variable (where the randomness comes from the choice of

dataset)，y∗ is the optimal deterministic prediction, t is a random target sampled from the true conditional p(t|x).

➢bias: how wrong the expected prediction is (corresponds to underfitting)

➢variance: the amount of variability in the predictions (corresponds to overfitting)

➢Bayes error: the inherent unpredictability of the targets

8.2 Bagging

8.2.1 Motivation

Suppose we could somehow sample 𝑚 independent training sets from 𝑝𝑠𝑎𝑚𝑝𝑙𝑒. We could then compute the

prediction 𝑦𝑖 based on each one, and take the average 𝑦 =
1

𝑚
∑ 𝑦𝑖

𝑚
𝑖=1 .

➢Bayes error: unchanged, since we have no control over it

➢Bias: unchanged, since the averaged prediction has the same expectation

➢Variance: reduced, since we’re averaging over independent samples

8.2.2 Idea

Solution: given training set 𝐷, use the empirical distribution 𝑝𝐷 as a proxy for 𝑝𝑠𝑎𝑚𝑝𝑙𝑒. This is called bootstrap

aggregation, or bagging.

• Take a single dataset 𝐷 with 𝑛 examples.

• Generate 𝐷 new datasets (“resamples” or “bootstrap samples”), each by sampling 𝑛 training examples

from 𝐷, with replacement.

• Average the predictions of models trained on each of these datasets.

• Intuition: As |𝐷| → ∞, we have 𝑝𝐷 → 𝑝𝑠𝑎𝑚𝑝𝑙𝑒.

8.2.3 Effect on Hypothesis Space

Bagging can change the hypothesis space / inductive bias:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 30 / 41

8.2.4 Bagging for Binary Classification

• If our classifiers output real-valued probabilities 𝑧𝑖 ∈ [0, 1], then we can average the predictions before

thresholding:

• If our classifiers output binary decisions 𝑦𝑖 ∈ {0, 1}, then we can still average the predictions before

thresholding:

• A bagged classifier can be stronger than the average underlying model

8.2.5 Some issues

• Problem: the datasets are not independent, so we don’t get the 1⁄𝑚 variance reduction.

➢Possible to show that if the sampled predictions have variance 𝜎2, and correlation 𝜌, then:

• Solution: Random forests = bagged decision trees, with one extra trick to decorrelate the predictions

➢When choosing each node of the decision tree, choose a random set of 𝑑 input features, and only

consider splits on those features

8.3 Boosting

To focus on specific examples, boosting uses a weighted training set.

• Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.

• The shifting focus strongly decorrelates their predictions

8.3.1 Weighted Training set

• Key idea: we can learn a classifier using different costs (aka weights) for examples.

• Change cost function:

• Usually require each 𝑤(𝑛) and ∑ 𝑤(𝑛) = 1.𝑁

𝑛=1

8.3.2 AdaBoost (Adaptive Boosting)

• Given a base classifier, the key steps of AdaBoost are:

1. At each iteration, re-weight the training samples by assigning larger weights to samples

(i.e., data points) that were classified incorrectly.

2. Train a new base classifier based on the re-weighted samples.

3. Add it to the ensemble of classifiers with an appropriate weight.

4. Repeat the process many times.

• Requirements for base classifier:

➢Needs to minimize weighted error.

➢Ensemble may get very large, so base classifier must be fast. It turns out that any so-called weak

learner / classifier suffices.

• Individually, weak learners may have high bias (underfit). By making each classifier focus on previous

mistakes, AdaBoost reduces bias

• Weak learner is a learning algorithm that outputs a hypothesis (e.g., a classifier) that performs slightly better

than chance, e.g., it predicts the correct label with probability 0.51 in binary label case.

• Decision Stump: A decision tree with a single split

8.3.2 AdaBoost Algorithm

• Input: Data 𝐷𝑁, weak classifier WeakLearn (a classification procedure that returns a classifier ℎ, e.g. best

decision stump, from a set of classifiers ℋ, e.g., all possible decision stumps), number of iterations 𝑇

• Output: Classifier 𝐻(𝑥)

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 31 / 41

• Initialize sample weights: 𝑤{𝑛} =
1

𝑁
 for 𝑛 = 1, ⋯ , 𝑁

• For 𝑡 = 1, ⋯ , 𝑇

• Return 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1)

• Weak classifiers which get lower weighted error get more weight in the final classifier

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 32 / 41

思路：错了，就大加权重，以此迭代。

8.3.3 AdaBoost Minimizes the Training Error

• This is under the simplifying assumption that each weak learner is 𝛾-better than a random predictor.

• This is called geometric convergence. It is fast!

8.3.4 Generalization Error of AdaBoost

• As we add more weak classifiers, the overall classifier 𝐻 becomes more “complex”.

• We expect more complex classifiers overfit, if one runs AdaBoost long enough, it can in fact overfit.

• But often it does not! Sometimes the test error decreases even after the training error is zero!

<Expect> <True situation>

8.3.5 Additive Models

An additive model with 𝑚 terms is given by:

Where .

A greedy approach to fitting additive models, known as stagewise training:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 33 / 41

We want to see how the stagewise training of additive models can be done. So, we should consider the exponential

loss:

Obtain the additive model with:

8.3.6 Boosting Summary

• Boosting reduces bias by generating an ensemble of weak classifiers.

• Each classifier is trained to reduce errors of previous ensemble.

• It is quite resilient to overfitting, though it can overfit.

9 Probabilistic Models

9.1 Model

• Start with a simple biased coin example:

• The coin is possibly loaded. So, we can assume that one coin flip outcome 𝑥 is a Bernoulli random variable for

some currently unknown parameter 𝜃 ∈ [0, 1].

• It’s sensible to assume that{x1, . . . , xN" }are independent and identically distributed Bernoullis.

• Thus the joint probability of the outcome {x1, . . . , xN" } is:

And we can also call it the likelihood function:

We usually work with log-likelihoods:

• Good values of 𝜃 should assign high probability to the observed data. This motivates the maximum likelihood

criterion, that we should pick the parameters that maximize the likelihood:

• Setting this to zero gives the maximum likelihood estimate:

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 34 / 41

• By finding the maximum likelihood we actually minimizing cross-entropies too:

• There are two approaches to classification:

9.2 Two approaches

9.2.1 A Generative Model: Bayes Classifier

• Problem: specifying a joint distribution over 𝐷 + 1 binary variables require 2𝐷+1 − 1 entries. This is

computationally prohibitive and would require an absurd amount of data to fit.

• We can represent model using an directed graphical model, or Bayesian network:

• In a Bayesian network, each node represents a random variable and the arrows represent the

dependencies between the variables. If there is an arrow pointing from node A to node B, then we can

say "node B depends on node A". This dependency is usually expressed in terms of conditional

probabilities.

• The parameters can be learned efficiently because the log-likelihood decomposes into independent terms

for each feature. Each of these log-likelihood terms depends on different sets of parameters, so they can

be optimized independently.

• We predict the category by performing inference in the model, apply Bayes’ Rule:

• For input 𝑥, predict by comparing the values of for different 𝑐 (e.g. choose the largest).

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 35 / 41

• Demerit and Merit:

9.2.2 MLE issue: Data Sparsity

• Maximum likelihood has a pitfall: if you have too little data, it can overfit.

• E.g., what if you flip the coin twice and get H both times?

• Because it never observed T, it assigns this outcome probability 0. This problem is known as data sparsity.

9.2.3 Bayesian Parameter Estimation

• In maximum likelihood, the observations are treated as random variables, but the parameters are not.

• The Bayesian approach treats the parameters as random variables as well. 𝛽 is the set of parameters in the

prior distribution of 𝜃.

• To define a Bayesian model, we need to specify two distributions:

➢The prior distribution 𝑝(𝜃), which encodes our beliefs about the parameters before we observe the data.

➢The likelihood 𝑝(𝐷| 𝜃), same as in maximum likelihood.

• When we update our beliefs based on the observations, we compute the posterior distribution using Bayes’ Rule:

For the coin example, our experience tells us 0.5 is more likely than 0.99. One particularly useful prior that lets us

specify this is the beta distribution (beta distribution 是指一种连续概率分布，它定义在区间 [0, 1] 上，用两个正参数 α 和 β

来控制分布的形状。它可以作为先验分布来表示对概率参数 θ 的不确定性):

➢The expectation 𝐸[𝜃] = 𝑎/(𝑎 + 𝑏) (easy to derive).

➢The distribution gets more peaked when 𝑎 and 𝑏 are large.

➢The uniform distribution is the special case where 𝑎 = 𝑏 = 1.

• Computing the posterior distribution:

(This is just a beta distribution with parameters 𝑁𝐻 + 𝑎 and 𝑁𝑇 + 𝑏)

• The posterior expectation of 𝜃 is:

(The parameters 𝑎 and 𝑏 of the prior can be thought of as pseudo-counts)

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 36 / 41

The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known

as conjugacy (conjugate priors), and it’s very useful.

9.2.4 Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely parameter settings under the posterior

Joint probability in the coin flip example:

Maximize by finding a critical point:

Comparison of estimates in the coin flip example:

10 k-Means and EM Algorithm

10.1 K-means

10.1.1 K-means Objective

Find cluster centers {𝑚𝑘}𝑘=1
𝐾 and assignments {𝑟(𝑛)}𝑛=1

𝑁 to minimize the sum of squared distances of data points

{𝑥(𝑛)} to their assigned centers.

(NP-hard problem)

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 37 / 41

So, the Optimization problem is:

Problem is hard when minimizing jointly over the parameters {𝒎𝑘}, {𝒓(𝑛)}. But if we fix one and minimize over

the other, then it becomes easy. Also, it doesn’t guarantee the same solution.

Assign each point to the cluster with the nearest center. E.g. if 𝒙(𝑛) is assigned to cluster 𝑘̂.

10.1.2 Alternating Minimization

10.1.3 K-means Algorithm

• Initialization: Set K cluster means m1, …, mK to random values

• Repeat until convergence (until assignments do not change):

➢Assignment: Optimize J w.r.t. {r}: Each data point x(n) assigned to nearest center and Responsibilities

(1-hot or 1-of-K encoding)

➢Refitting: Optimize J w.r.t. {m}: Each center is set to mean of data assigned to it

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 38 / 41

Q: How can we reduce the local minima?

A: By try many random starting points.

10.1.4 Soft K-means Algorithm

• Instead of making hard assignments of data points to clusters, we can make soft assignments. One cluster may

have a responsibility of . 7 for a datapoint and another may have a responsibility of . 3.

• Initialization: Set K means {mk} to random values

• Repeat until convergence (measured by how much 𝐽 changes):

➢Assignment: Each data point 𝑛 given soft “degree of assignment” to each cluster mean 𝑘, based on

responsibilities

➢Refitting: Model parameters, means, are adjusted to match sample means of datapoints they are

responsible for

10.2 Multivariate Data

• Multiple measurements (sensors)

• 𝐷 inputs / features / attributes

• 𝑁 instances / observations / examples

10.2.1 Multivariate Mean and Covariance

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 39 / 41

10.2.2 Multivariate Gaussian Distribution

10.2.3 Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

10.2 EM Algorithm

10.2.1 EM Algorithm

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 40 / 41

10.2.2 Review

https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

 41 / 41

• The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster.

2. Refitting step: Move each cluster center to the average of the data assigned to it.

• The EM Algorithm:

1. E-step: Compute the posterior probability over 𝑧 given our current model.

2. M-step: Maximize the probability that it would generate the data it is currently responsible for.

https://zhtc.one/

