Copyright 2023 All Right Reserved By TC-tea website

INT305 note

(Machine Learning)

Introduction
Supervised learning (much of this course)

Task Inputs Labels
object recognition image object category
image captioning image caption

document classification text document category
speech-to-text audio waveform text

KNN
¢ Nearest neighbours sensitive to noise or mis-labelled data (“class noise”).
* Smooth by having k nearest neighbours vote.

1NN

Algorithm (kNN):

1. Find k examples {x(V) D} closest to the test instance x
2. Classification output is majority class

k
every example in the blue every example in the blue Yy = argmax E I[(t(: ) = [('))
shaded area will be shaded area will be classified t(z) P
misclassified as the blue class correctly as the red class

¢ Balancing hyperparameter k
> Optimal choice of k depends on number of data points n.
> Nice theoretical properties if k — o0 and k/n — 0.
> Rule of thumb: choose k < Vn.
> We can choose k using validation set.
k = Number of Nearest Neighbors
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Linear Methods for Regression, Optimization

Linear regression exemplifies recurring themes of this course:
e Choose a model and a loss function
e Formulate an optimization problem
« Solve the minimization problem using one of two strategies
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> Direct solution (set derivatives to zero)
> Gradient descent
) the algorithm, i.e. represents in terms of linear algebra
e Make a linear model more powerful using features
e Improve the generalization by adding a
Supervised Learning Setup
In supervised learning:
e There isinput x € X, typically a vector of features (or covariates)
e There istarget t € T, (also called response, outcome, output, class)
* Objective is to learn a function f: X — 7 such that t ® y = f(x) based on some data D = {(x® ,t®)) for i
=1,2, ~,N}
Linear Regression
Linear Regression Model
Model: In linear regression, we use a linear function of the features x = x1, ~ , xp € RP to make predictions y
of the target value t € R:

y=f(x):2wjxj+b
J

is the
is the
is the (or intercept)
and b together are the
We hope that our prediction is close to the target: y = t.

e If we have only 1 feature: y = wx + b wherew, x, b € R.
e yis linear in x.
¢ If we have only D features: y =w'x + bwherew,x € R?,bh € R
e yis linear in x.
Linear Regression workflow
We have a dataset D = {(x? ,t®) fori=1,2, -, N}
o x() = (x1, x20, ~ xp@)T € RP are the inputs (e.g. age, height)
* ti) € R is the target or response (e.g. income)
« Predict ¢ with a linear function of x(:
o tl) = y) = w'x) + p
o Different w, b define different lines.
¢ We want the “best” line w, b .
Linear Regression Loss Function
¢ A loss function L(y,t) defines how bad it is if, for some example x, the algorithm predicts y, but the target is
actually ¢.
¢ Squared error loss function:

1
Ly =50~ g

e y — t is the residual, and we want to make this small in magnitude.
e The 1/2 factor is just to make the calculations convenient.
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 Cost function: loss function averaged over all training examples.
1% u
_ M _@Oy2 _ Ty (D) _ (D32
J(w,b) ZNE 6% t*) N E(wx +b —t®)
i=1 i=1
Linear Regression Vectorization

But if we expand y@, it will get messy:
1 N D
® i
v 2. Q. (wx®) +b — 0y

i=1 j=1

algorithms by expressing them in terms of vectors and matrices:

w= (wy,wp)' x= (x,xp)'
y=w'x+b
Python code:
y=b
for j in range(M): ==
y += w[jl * x[j] = y = np.dot(w, X) + b

Organize all the training examples into a design matrix X with one row per training example, and all the targets
into the target vector t:

one feature across
all training examples

xT 8/0] 3 0 N
X=|x®T)=16[-1] 5 3 exZ:wep:;a(lcgl?or)
xB3)T 215 -2 8
Computing the for the whole dataset:
wlx() +p y(1)
wlx®™) +p y(:\')
Computing the across the whole dataset:
y =Xw+ b1

1
_ &2
g =5 lly -l

We can also add a column of 1's to design matrix, combine the bias and the weights, and conveniently write:
b

e RV*(0+1) and w = w1 € RP+1
2

1 [x(l)]T
1 [X(Z)]T
1 :
Then, our predictions reduce to y = Xw.

Direct Solution -

Linear Algebra

* We seek w to minimize ||Xw — t||2, or equivalently ||Xw — t||
e range X = {Xw|w € RDP} is a D-dimensional subspace of R¥
 Recall that the closest point y*= Xw'in subspace range(X) of R¥ to arbitrary pointt € R~ is found by orthogonal
projection.
e Wehave (y* —t) L Xw, Yw € RD
e y* is the closest point to t

X =

t t
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Calculus »
. : derivative of a multivariate function with respect to one of its arguments.

if(x %3 = limf(xl + h,x3) — f (%1, %2)
Bag” ©F #  j3p h

» To compute, take the single variable derivative, pretending the other arguments are constant.

e Example: partial derivatives of the prediction y.

a—VV] aW}[ZWrXI'f'b

ab ab[ZWIX/-l‘b

e For , apply the chain rule:
oL _dLoy 0L _dLoy
ow;  dy ow; ob  dyadb
d |1 R
L T Oy | (e y
= T [2 y—-1) ] Xj
= -t

» For cost derivatives, use Iinearity and average over data points:
- ) ag 1N . .
(y® — t@D)x U _ _Z @ _ ¢
aw, Z J 9 NLut
¢ Minimum must occur at a point where partial derivative are zero.

ag . 0J _
a_Wj =0 (V]), % = [0

(If 8J/0w; # 0, you could reduce the cost by changing w;)
J J

¢ We call the vector of partial derivatives the
¢ Thus, the “gradient of f: R> — R”, denoted Vf(w), is:

0 0
(a—wlf(w). "',mf(w))T

* The gradient points in the direction of the greatest rate of increase.
* Analogue of second derivative (the “Hessian” matrix):

V2f(w) € RP*P is a matrix with[V2f(w)];; = ——— f(w)

6w ow;j

* We seek w to minimize J(w) = ||Xw —t||%/ 2
» Taking the gradient with respect to w we get:

Vo d(w) = X'Xw— X't =0

w' = (X'X)"1X"t

e Linear regression is one of only a handful of models in this course that permit direct solution.
Polynomial Feature Mapping
Introduction

The relation between the input and output may not be linear. But we can still use linear regression by mapping
the input features to another space using (or ). ¢ (x) : R — R4 and treat the

mapped feature (in R4) as the input of a linear regression procedure.
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Find the data using a degree-M polynomial function of the form:

M
y=wo+wix +wyx? + - +wyaxM = Z wixt
i=0

« Here the feature mapping is ¢(x) = [1, x, x%, ..., xM]".

* We can use linear regression to find w, since y = ¢(x)'w is linear with wo, wi, ..., wm
Model Complexity and Generalization

¢ Underfitting (M=0): model is too simple — does not fit the data.

» QOverfitting (M=9): model is too complex — fits perfectly.

—— Training
—0— Test 1 o0 M=0 1

L2 Regularization

: a function that quantifies how much we prefer one hypothesis VS another.
» We can encourage the weights to be small by choosing as our regularizer the L? penalty.

R(W) = 23w}

(To be precise, the L2 norm is Euclidean distance, we're regularizing the squared L? norm)
» The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

TregW) = J(W) + AR(W) = J(w) + %Z w?
j

« If you fit training data poorly, J is large. If your optimal weights have high values, R is large.
e Large A penalize wight values more.

¢ Like M, A is a hyperparameter we can tune with a validation set.

loss

regularizer

L2 Regularized Least Squares: Ridge regression
For the least squares problem, we have J(w) = j |Xw — t||?
e When 2 > 0 (with regularization), regularized cost gives:

idge : 5, oL 9 A ;
wi\m“ = argmin Jyeg (W) = argmin — || Xw — t||3 + =||w]|3
w = w 2N =2 -

=(X"X+A) X"t
* The case 1 = 0 (no regularization) reduces to least squares solution!
Gradient Descent
Concepts

* Many times, we do not have a direct solution: Taking derivatives of J w.r.t w and setting them to 0 doesn’t have
an explicit solution.
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» Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is
met.

* We initialize the weights to something reasonable (e.g., all zeros) and repeatedly adjust them in the direction of
steepest descent.

(REEFRIRER 0 B A RAR)
e Observe:
> If aJ/ow; > 0, then increasing w; increases J.
> If dJ/ow; < 0, then increasing w; decreases J
¢ The following update always decreases the cost function for small enough a (unless dJj/ow; = 0):
e a > 0 is a learning rate (or step size). The larger it is, the faster w changes (but values are typically small).
¢ This gets its name from the gradient:

aJ
6(7 an
VWJ = a— = :
BWD
e Update rule in
WeW—a a—J
ow

e And for we have:

N
W %Z(y(i) — t®)x®
i=1

* So gradient descent updates w in the direction of fastest decrease.
* Observe that once it converges, we get a .ie. g—i =0
Gradient Descent for Linear Regression
¢ Why gradient descent, if we can find the optimum directly?
> gradient descent can be applied to a much broader set of models
> gradient descent can be easier to implement than direct solutions
> For regression in high-dimensional space, gradient descent is more efficient than direct solution
Gradient Descent under the L2 Regularization

* The gradient descent update to minimize the L? regularized cost J + AR results in weight decay:

a
wew—aE(J+A.‘R)

_ 6J+/10R
W\ ow T tow
aJ )
=w—a|s—-+1iw
ow
=1-ald) od
=1 -al)w a(’)w

Learning Rate (Step Size)
¢ In gradient descent, the learning rate « is a hyperparameter we need to tune.
* Good values are typically between 0.001 and 0.1.
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instability
(try a smaller
learning rate)
= g, 4 \ convergence
X G training B (try a larger
N S ( R - - i cost b\\\ learning rate)
b . \. X \\\
\ \—> -~ \\ oo ?\\\
R N convergence \
NT N\_/ ’ NG ~ — \~\\\\
a too small: a too large: " a much too large:
slow progress oscillations instability iteration #
« To diagnose optimization problems, it's useful to look at : plot the training cost as a function of

iteration.
¢ Warning: in general, it's very hard to tell from the training curves whether an optimizer has converged. They
can reveal major problems, but they can’t guarantee convergence.
Stochastic Gradient Descent
Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example
1- Choose i uniformly at random
aL®

2-0<0—« %0

Cost of each SGD update is independent of N!

» SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly at random, the stochastic gradient is an
unbiased estimate of the batch gradient:

aLO] 1<aL® ag
ao]‘ﬁi_l 260 ~ 06

Mini-batch Stochastic Gradient Descent
. with using single training example to estimate gradient:
> Variance in the estimate may be high
> We can't exploit efficient vectorized operations

> Compute the gradients on a randomly chosen medium-sized set of training examples M c {1, -~ , N}
called a mini-batch.
e Stochastic gradients computed on larger mini-batches have smaller variance.
* The mini-batch size |M]| is a hyperparameter that needs to be set.
> Too large: requires more compute: e.g., it takes more memory to store the activations, and longer to
compute each gradient update
> Too small: can't exploit vectorization, has high variance
> A reasonable value might be |AM| = 100.
Comparation

¢ Batch gradient descent moves directly downhill (locally speaking).
» SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
A Batch Gradient Descent, £#tZ#E Tk, EREREHIVER, CREES RERNFERFREHEARIITHEE
ME#H. IREERRNE ZTIHTXN RISAFABERKE, IFIESRIE.
A Stochastic Gradient Descent, BEHERE Tk, RIEAESRERNERA—IHEARHATSHNER. K2V
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SERER, RERARE TR FRURTEKSSEER/ NMEIMEES.
A Mini-Batch Gradient Descent, /itB#E T, X ERBEMITEN—NMrdiE, ERIEEEREREE
A—EnHARATSHNET ., XM EER T ITEEETERE.

Linear Classifiers, Logistic Regression, Multiclass Classification

Binary linear classification
« Classification: given a D-dimensional input x € R? predict a discrete-valued target
¢ Binary: predict a binary target ¢t € {0,1}
> Training examples with ¢t = 1 are called positive examples, and training examples with ¢t = 0 are called
negative examples.
>t € {0,1}ort € {-1, +1} is for computational convenience.
e Linear: model prediction y is a linear function of x, followed by a threshold r:

z=W'x+b
11 YHz=r
— |0 ifz<r
o : We can assume without loss of generality (WLOG) that the threshold » = 0

wx+b>r & wx+b-1r>0

— Wo
o : Add a dummy feature xo which always takes the value 1. the weight wo = b is equivalent
to a bias (same as linear regression)

o Simplified model: receive input x € R+ with xo = 1

z=wW'x

0o I t
\ 011
| 110

e Suppose this is our training set, with the dummy feature x0 included.
* Which conditions on w0, wl guarantee perfect classification?
> When x1 =0, need: z = w0x0 + wixl > 0 «== w0 > 0
> When x1 =1, need: z = w0x0 + wixl < 0 «=m w0 + wl < 0
> Example solution: w0 =1, wl = =2

wo

wo+w; <0

e Training examples are points
e Weights (hypotheses) w can be represented by TH+ ={x:wx 20}, H- = {x: w'x < 0}
e The boundary is the decision boundary: {x: w'x = 0}
o If the training examples can be perfectly separated by a linear decision rule, we say
» Weights (hypotheses) w are points
¢ Each training example x specifies a half-space w must lie in to be correctly classified: w'x 2 0if t = 1
> x0=1,x1=0,t = 1= (w0, wl) € w:w0 20
> x0=1,x1=1,t=0=—(w0,wl) € w:w0+wl<0
e The region satisfying all the constraints is the feasible region; if this region is nhonempty, the problem is
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feasible, otherwise it is infeasible.

Weight Space
\ )

Data Space

-
\<u' 1

- Slice for x, = 1and - Slice for wy = —1.5 for the constraints
- Examplesol: wy = —=1.5w; =1L, w, =1 - wy <0
- Decision boundary: - wotwy <0
W0x0+W1x1+W2x2=0 - W0+W1<0
==—-15+x% +x, =0 " WA e

Towards Logistic Regression
Define loss function then try to minimize the resulting cost function
Attempt 1.

0 i =i
Lo_1(y,t) = {1 l;i o 7

=I[y # t]

» Usually, the cost J is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate:

N
i . .
et @) =+
g NZn[y # t(]
1=

* Minimum of a function will be at its critical points, use Chain rule to find the critical point of 0-1 loss
3£0_1 . 6£0_1 0z
dw; 9z Ow;

® 0Lo0-1/0; is zero everywhere it's defined:

> dLo-1/0w; = 0 means that changing the weights by a very small amount probably has no effect on the loss.
> Almost any point has 0 gradient!

Attempt 2:
zZ=w'x
1
Lsg(z,t) = E(Z —t)?

* Doesn't matter that the targets are actually binary. Treat them as continuous values.
« For this loss function, it makes sense to make final predictions by thresholding z at 1/2

large
residual

» The loss function hates when you make correct predictions with high confidence!
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e It t = 1, it's more unhappy about z = 10 than z = 0.
Attempt 3:

1
14+e°?

o(z) =

e o 1(y) = log(y/(1 — y)) is called the logit.
¢ A linear model with a logistic nonlinearity is known as log-linear:
z=w'x
y=0(2)
il
Lsp(y, t) = SO - t)?
» Used in this way, ¢ is called an activation function.

0.5
0.4
0.3

L B 0L 0z
ow; T 9z ow;j

0.2

loss

0.1
0.0
-0.1

025—§ =6 -4 -2 © 2 4

(plot of Lse as a function of z, assuming t = 1)
e For z « 0, we have o(z) = 0.
® 0L/dz = 0 (check) =>dL/ow; = 0 > derivative w.r.t. w; is small = w; is like a critical point.
o If the prediction is really wrong, you should be far from a critical point (which is your candidate solution).

e Because y € 0, 1, we can interpret it as the estimated probability that ¢t = 1. If ¢t = 0, then we want to heavily

penalize y = 1.

» Cross-entropy loss (aka log loss) captures this intuition:
5

o 4
23 .
RS WO A
: 1 = —tlogy — (1 — t)log(1 —y)
8.0 0.2 0.4 i 0.6 0.8 1.0
» The logistic loss is a in w, so let’s consider the method.

> Recall: we initialize the weights to something reasonable and repeatedly adjust them in the direction of
steepest descent.
> A standard initialization is w = 0.

Lce(y,t) = —tlogy — (1 — t)log(1 — y)
y=1/(1+e7%) andz=w'x
OLCE _ 6£CE ay 0z _ t 1-—t
ow; 9y 0z awj_( y+1—y> yd=3) "%
= (y — )x;
Gradient descent (coordinate-wise) update to find the weights of logistic regression:
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aJ
WjPWj—aa—VVj

N
a y ; ;
=w,— Nz(y(l) — t®)x®
i=1
Gradient descent updates for Linear regression and Logistic regression (both examples of generalized linear models):

N
Wew— ﬁz(ym _ tyx®
N 2
=1
Multiclass Classification and Softmax Regression
Multiclass Classification
« Classification tasks with more than two categories
e Targets form a discrete set {1, ~ ,K}.

« It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

t=(0,--,0,1,0--,0) € R
L J
Y

entry kis 1
* We can start with a linear function of the inputs.

D
Zp = Zwijj +b, for k=12, K
j=1
* Now there are D input dimensions and K output dimensions, so we need K x D weights, which we arrange as
a weight matrix w.
« Also, we have a K-dimensional vector b of biases. Then eliminate the bias b by taking W € Rx*(+1) and adding
a dummy variable xo = 1.
z = Wx + b or with dummy xo = 1 z = Wx
¢ We can interpret the magnitude of z; as a measure of how much the model prefers kas its prediction to turn
this linear prediction into a one-hot prediction.
y; = {1 [ =arg mgxkzk
0 otherwise
Softmax Regression
* We need to soften our predictions for the sake of optimization.
* We want soft predictions that are like probabilities, i.e., 0 < yx < 1 and ok y, = 1.
» A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

e’k
Zk’ eZk’
> Qutputs can be interpreted as probabilities (positive and sum to 1)

> If zk is much larger than the others, then softmax(z). = 1 and it behaves like argmax.
o If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

Vi = softmax(zy, -+, zg)k =

K
Ly, t) = — Z tilogyy

k=1
= —t'(logy)

o Just like with logistic regression, we typically combine the softmax and cross-entropy into a

¢ Softmax regression (with dummy x0 = 1):
z = Wx
y = softmax(z)
Lcg = —t'(logy)
11/ 41
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» Gradient descent updates can be derived for each row of W:
6£CE _ GLCE aZk
Bwk B aZk aWk

@ _ (z) 0]
W, «W, —a— X
k= Tk =N Z

=V —tx) " X

« Similar to linear/logistic reg (no coincidence) (verify the update)
* Sometimes we can overcome the nonlinear problem with feature maps:

SVM, SVM Loss and Softmax Loss
Optimal Separating Hyperplane

e Concept: A hyperplane that separates two classes and maximizes the distance to the closest point from either
class, i.e., maximize the margin of the classifier.
« Intuitively, ensuring that a classifier is not too close to any data points leads to better generalization on the test
data.

f@)=b+w'z=0
Geometry of Points and Planes
» Recall that the decision hyperplane is orthogonal (perpendicular) to w.

e The vector w* =

Wiz is a unit vector pointing in the same direction as w.

* The same hyperplane could equivalently be defined in terms of w*
» The (signed) distance of a point x' to the hyperplane is:
T + b
||W||2
Maximizing Margin as an Optimization Problem

» Recall: the classification for the i-th data point is correct when:
sign(w ' x() 4 p) = ()
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e This can be rewritten as:
tO(w x? +b) >0
e Enforcing a margin of C:
(w"x() + b)
[[wl[,

signed distance

>C

0 .

¢ Max-margin objective:
max C
w,b
() (w Tx()
of, B PR B o R
[[wll,
¢ Plug in C = 1/||w]|2 and simplify:
t()(wTx() 4 b) 1
[wlly ~ wll;

geometric margin constraint

= tO(wxD +p) >1

algebraic margin constraint

¢ Equivalent optimization objective:
min w3
st. tD(w'xD +p)>1 i =150 05 N
Support Vector Machine
Concepts
« Observe: if the margin constraint is not tight for x, we could remove it from the training set and the optimal
w would be the same.
¢ The important training examples are the ones with algebraic margin 1, and are called support vectors
* Hence, this algorithm is called the (hard) (or Support Vector Classifier).
¢ SVM-like algorithms are often called or
Maximizing Margin for Non-Separable Data Points

' [wll;
f;.;') =b+w'z=0
@
®
¢ Main idea:
e Allow some points to be within the margin or even be misclassified; were present this with slack variables
&i.
e But constrain or penalize the total amount of slack.
¢ Soft margin constraint:
tD(wTx() + p
(w'x) + b) > C(1-¢)
For& = O: [[wll,
¢ Reduce §&;
[ )
1 N
. 2
min > [Iwllz +1 Z;E;
§ T
st. tOw'xD+p)>1-¢ = N
& >0 =T [— N
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e v is a hyperparameter that trades off the margin with the amount of slack
e Fory =0, we'll get w = 0.
e Asy-> o we get the hard-margin objective.

» Note: it is also possible to constrain Z &i instead of penalizing it.
i

From Margin Violation to Hinge Loss
Let’s simplify the soft margin constraint by eliminating &;. Recall:
tOw'xD+p)>1-¢ i=1,...,N
&>0 = LN

Rewrite as & > 1 — t)(wTx() + b).
Case 1: 1 — t((w'x() + p) <0

» The smallest non-negative &; that satisfies the constraint is & = 0.
Case 2: 1 — t()(w'x() + b) >0

» The smallest &; that satisfies the constraint is & = 1 — t()(w " x() + b).
Hence, & = max{0,1 — t()(w"x() 4 p)}.

Therefore, the slack penalty can be written as

N

N
Z{i = Z max{0,1 — t(w"x() + b)}.
i=1

=1

If we write y()(w, b) = w"x + b, then the optimization problem can be written as

N
: i) i 1 2
min E_l max{0,1 — ty()(w, b)} + % [lwl|

@ The loss function Ly(y,t) = max{0,1 — ty} is called the hinge loss.
@ The second term is the Ly-norm of the weights.

@ Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss
and an L, regularizer.

Multiclass SVM Loss

Suppose: 3 training examples, 3 classes. Multiclass SVM loss: Multiclass SVM loss:
With some W the scores f(z, W) = Wz are:

Given an example (Zi, ;) Given an example (3, ¥;)
Wwhere g; is the image ana where g; is the image ana
where y,;_is the (integer) label, where Yi is the (integer) label,
and using the shorthand for the and using the shorthand for the
scores vector: 8 = f(z;, W) scores vector: s = f(z;, W)
the SVM loss has the form:
he SVM loss has the form: e :
cat 3.2 153 | 22 e S loae Pae heform Li = 5, max(0,5; = 5, +1)
I-Lz' = Zj;éy maX(O, 8j — 8y, + 1)| and the full training loss is the mean
. over all examples in the training data:
car 5.1 4.9 2.5 =max(0,2.2 - (-3.1) + 1) 3 el
+max(0,2.5-(-3.1)+ 1) L= N i1 Li
frog -1.7 20 -3.1 = max(0, 5.3) + max(0, 5.6)
- L=(2.9+0+10.9)3
: 2.9 0 10.9 e
Losses: . ' -109 =46
Softmax

scores = unnormalized log probabilities of the classes.

P(Y s le e xi) — Z:c:‘:fsj where IS - f(m’l; W)‘

Want to maximize the log likelihood, or (for a loss function) Seftmax function

to minimize the negative log likelihood of the correct class:

L= —log P{¥ = | X =)
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Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

unnormalized log probabilities

SVM & Softmax

¥

unnormalized probabilities

3.2
5.1
-1.7

L; = —log( £

Ui )
e’

exp normalize

— |164.0— | 0.87
0.18 0.00

24.5 0.13 |- L_i=-log(0.13)

=0.89

probabilities

[REZ3 CV] SVM, Softmax %k s %8 svm & H%L-CSDN 5

hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85-0.28 + 1) +
—» | 0.86 max(0, 0.86 - 0.28 + 1)
001 | 005 | 01 | 005 15 0.0 E
o 1.58
0.7 0.2 0.05 | 0.16 22 + 0.2
0.0 | -045 | -0.2 | 0.03 -44 03| [ ] cross-entropy loss (Softmax)
-2.85 0.058 0.016
w 56 b
ex| normalize
T _p» 236 | o | 0,631 | -100(0353)
xz (to sum =
to one) 0.452
0.28 1.32 0.353
Y| 2
Softmax vs. SVM
= e'Vi e .
L; = —log( 5, & ) L; = Z#y' max(0, s; — sy, + 1)

assume scores:

Q: Suppose | take a datapoint

and | jiggle a bit (changing its

[10,-2, 3] score sli
ghtly). What happens to
[1 0,9, 9] the loss in both cases?
[10, -100, -100]
and |y, =0

Neural Network and Back Propagation

Neural Network

Neural Network: without the brain stuff

(Before) Linear score function: f = Wx
(Now) 2-layer Neural Network: f = W2max(0, W1ix)
or 3-layer Neural Network: f = Wsmax(0, W2max(0, W1x))

Activation Functions

Sigmoid
ox)=1/1+e™)

tanh tanh(x)

RetU  max(0,x)

Leaky RelLU

max(0:10,%) aecsse Vi,

Maxout max(wix + by, wix + b,)

ELU ;
X ifx>0

= {a(exp(x) ~1) ifx<0

~Bu
~LRsLU
—Roll)

Hm B w2 [s]
100 10

3072
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Example Feed-forward computation of a Neural Network

4
&3
QN
;.;.

output layer

}\4:‘"
s
o§

input layer
hidden layer 1 hidden layer 2

# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = pp.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

5.1.2 Gradient Descent

s=fl;W)=Wx scores function
L= Z max(0, sj — sy, + 1) SVM loss =Wx||L = Z max(0,s; — sy, + 1)
J#yi Z J#yi
N ~ ¢\ s (scores) //m:‘\
b= lz L; + Z W2 data loss + regularization O & L
N L=
i=1 k w | - o
@ )
want = Rowy
. g =
Convolutional Network i B> heursiTuringiRischine
(AlexNet) // VIR
/// e P
i L f ¥
inputimage _— [ inputtape
weights — il
loss o LT loss

Example 1:

activations

f,y,2) =(x+y)z

“local gradient”

a5
=x+ @ =i 6_q = f
=XTY 5%~ "oy of
e 0z
ax
- oF o _ Chain rule: 7
f=qz a_ = z'a_' =q a/ :
q z 4 oz gradients
_of or of '
Went: ax’ay’ oz

Example 2:

T 1 4 e~ (wozotwizi+wy)

flz)=e* - oo | |120-1 - 4z
af 77

fo(@) =az - e f(z)=c+z - ‘—1;=1 16 / 41
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[local gradient] x [its gradient]

SEd e Y —
[11x[0.2] = 0.2 (both inputs!)

Sigmoid feature:

1 1
1 + e~ (wozo+wizy+ws) o(z) = 1+ez| sigmoid function

o T (B (=) - oo

f(w,z) =

sigmoid gate

100] A7) 100 q 037
ol \_/ 020 U 183

\ (0.73)*(1-0.73)=0.2

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient... “switcher”?

5.1.2 Gradients for vector

Vectorized operation oL __|of|oL

ar _ |oz|of

Jacobian matrix

4096-d — f(x) = max(0,x)

input vector | (elementwise)

4096-d
output vector

il

Q: what is the size Q2: what does it look

of the Jacobian like?
matrix
[4096 x 4096!]
Example:
A vectorized example: f(x, W) = ||[W - x||? = XL, (W - x)?

|
0.088 O.176]W
0.104 0.208

) (12)

Always check: The gradient with respect to a
[0.44 \__/ 1.00 / J P

—01121 052 aa, variable should have the same
[ 0.636 ox e shape as the variable
Wlllxl +""+‘W1’nxn %_Zi%
g=W-x= : axi_kanaxi
Wyaxy + - + Wy nxp _ z 20 Wi
f@=lqll*=qf +--+q2 ,

17 /7 41
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6 Convolutional Neural Network

6.1 Basic concepts

Cca:t. mmsls@wxlo

C1: feature maps
6@28:28

|
| Full conAecnon | Gauss-an connections
9 i Full

[LeNet-5, LeCun 1980]

ConVOIUtlon Layer Filters always extend the full
e depth of the input volume )
32x32x3 image __— 32x32x3 image
/ 5x5x3 filter w
5x5x3 filter
32 7
Convolve the filter with the image “~~ ‘1 number:

i.e. “slide over the image spatially,

; 5 the result of taking a dot product between the
computing dot products

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wiz+b

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32
32
Convolution Layer
CONV, CONV, CONV,
RelLU RelLU RelLU
32 eg.6 eg. 10
3 5x5x3 5x5x6
y " 52 filters filters
We stack these up to get a “new image” of size 28x28x6! 3 6
Preview:
Low-Level| |Mid-Level| |High-Level Trainable
— — — —_—
Feature Feature Feature Classifier
i 4 A
Hubel & Weisel featural hierarchy
topographical mappi .
pograp apping rypercomples @ high level
cells @
complex cells <D mid level
simple cells
O low level

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CINEERDNZIIN EESEDRENERERAERG
“ one filter =>
one activation map example 5x5 filters

(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

fleylgleyl = Z Zfln. - glx—ny,y—n,]

]

elementwise multiplication and sum of
a filter and the signal (image)
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6.2 Convolutional layer
e Qutput size:

N
Output size:
= (N - F) / stride + 1
N eg.N=7,F=3:
F stride 1=>(7-3)/1+1=5
stride2=>(7-3)2+1=3
stride 3=>(7-3)/3+1=2.33
e Common to zero pad the border:
01910 e e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
’ 7x7 output!
g in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1
F =5 => zero pad with 2
F =7 => zero pad with 3
e Calculation example:
Examples time: Examples time: y
Input volume: 32x32x3 Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 10 5x5 filters with stride 1, pad 2
Output volume size: Number of parameters in this layer?
(32+2*2-5)/1+1 = 32 spatially, so each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
32x32x10 =>76*10 =760

¢ Conclusion:
Common settings:

Summary. To summarize, the Conv Layer:

 Accepts a volume of size Wy x Hy x D

p sof2, e
« Requires four hyperparameters: g g LF !
: F=5,8=1,P=2
F=58=2P=7?

F=1,8=1P

o Number of filters K,
o their spatial extent F',
o the stride S, -
o the amount of zero padding P.
Produces a volume of size Wy x Hy x Dy where:

o Wo=(W) —F+2P)/S+1

o H, = (H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

© D2 = K
With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F - F' - Dy ) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

The brain/neuron view of CONV Layer

32
28 ggt:;:ttlsv:ation map is a 28x28 sheet of neuron EO 00 Cﬂ 28 ;iﬁz;;é:%zﬂf :g o
1. Each is connected to a small region in the input (28x28x5)
2. All of them share parameters
32 28 “5x5 filter” -> “5x5 receptive field for each neuron” 28 IZS:an:!,ﬁfogkﬂf;e:ﬁe same
3 = region in the input volume
6.3 Pooling Iayer 224x224x64
* Makes the representations smaller and more manageable e
» Operates over each activation map independently T @

= 12
224 downsampling
112

224 19/ 41
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Max pooling:

Single depth slice

X 111]12)| 4
max pool with 2x2 filters
5(6 (7|8 and stride 2 6|8 %
3| 2 (i 3|4
112 (3|4
y .

Fully connected layer

Accepts a volume of size Wy x Hy x D, Common settings:

Requires three hyperparameters:
o their spatial extent F,
o the stride S,
Produces a volume of size Wy x Hy x D where:
o Wo=(W; —F)/S+1
° H2 :(Hl _F)/STI
° D2 — D1
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

F=2,8=2
F=3,8=2

» Contains neurons that connect to the entire input volume, as in ordinary Neural Network

RELU RELU
CONV lCONVl

v

Case study: Models

LeNet-5
Climisigs T meps10@iado
ure
2z Sozoes o
6@14x14
Convolutions Subsampling
AlexNet

RELU RELU
CONV

Corwolutions

RELU RELU
CONVlCON\/l

;

|

CON\/l

;

car
fruck
@ifplane
ship

horse

1. maps 16@5;6

|
| Ful conlection | Gaussian connections

Sut Full

g

= ; ;L,‘g\dense

dense

H

Max 28
pooling

Max
pooling

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[65x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons
[4096] 4096 neurons
[1000] 1000 neurons (class scores)
ZFNet
image size 224 10
filter size 7
lséridez - mmx
stride 2
3 ss||J®
Y lz
Input Image
Layer 1 Layer 2

126 Max

pooling #9%%

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

wZ56
€
4096 40 class
units| [ unit: softmax
256
Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
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AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%
6.5.4 VCGNet

[ TonNoi Configuration
LY A D
TTweight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
Iy I layers [ I

| layers |
input (221 % ] —
conv. conv. conv. conv. conv. o364 |
LRN | comv3-64 | com3-64 | com3-64 f comvi-oi |
Only 3x3 CONV stride 1, pad 1 e | e e | e ] et R o8
and 2x2 MAX POOL stride 2 o ITS6 T o3 T6 = o356 | com 3356
conv3-256 | conv3-256 conv3-256 § conv3-256
conv3-256 § convi-256
conv3-256
/ ““"’;';' comv3-3T2 comv 3312 feom 3312
conv3-512 | conv3-512 conv3-512 § conv3-512
conv3-512 § conv3-S12
conv3-S12
conv3-S12 | conv3-312 | convi-S12 | convi-S12 | comvi-312 fconvi-512
onv 3. ‘ 2 | conv3-512 v: 2 onv3-512 | conv. 2
best model e e R e B
conv3-S12
EC-W%
y TCA096
11.2% top 5 error in ILSVRC 2013 e

->
7.3% top 5 error

INPUT: [224x224x3] ~ memory: 224*224*3=150K params:0 (notcounting biases)

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3"3)"64 = 1,728 Note:

CONV3-64: [224x224x64] memory: 224*224*64=3.2M s: (3*3*64)°64 = 36,864

POOL2: [112x112x64] memory: 112*112*64=800K params: 0 o
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 Most memory is in
CONV3-128: [112x112x128] memory: 112°112*128=1.6M params: (3*3*128)*128 = 147,456 early CONV

POOL2: [66x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56°256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*287256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28"512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0 Most params are
CONV3-512: [14x14x512] memory: 14"14*512=100K params: (3*3*512)*512 = 2,359,296 in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14"512=100K params: (3*3"512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

6.5.5 GoogleNet

caafea]
gaa
=

=
] \ | | wess | Inception module
1x1 convolutions 1x1 convolutions. 3x3 max pooling. ‘
ILSVRC 2014 winner (6.7% top 5 error)
ype T - aopn | #ix1 | Pas | 4axs | Poct | wexs ; wes [ o | Eun features:
convolution TXT/2 112x112x64 [ 27K 3aM -
‘max pool 3x3/2 56 % 56 % 64 0
T o T mis T = L - Only 5 million params!
inception (3a) 2828 % 256 2 o4 - 128 16 0 2 159K 128M
inception (3b) 28 x 28 x 480 2 128 128 192 2 9% ol 380K 30aM (Removes FC Iayers
max pool 3x3/2_ | tax14x480 | 0 completely)
inception (4a) 14x14x512 2 192 % 208 16 a8 o 364K 7IM
inception (4b) 14 x14x512 2 160 1 24 24 o4 ol 43K XXM
inception (4¢) 14x14x512 2 128 128 256 24 o4 o 460K 100M .
inception (4d) 14 14 % 528 2 12 144 258 2 o4 o4 SSOK. 119M compared to AIeXNet'
inception (4) 14x 14 %832 2 256, 160 320 2 128 128 $40K oM | o 12X IeSS params
max pool 3x3/2 7TxTx832 0
mcepion (55) Taxss2 | 2 | % | w | w0 | w | m | m | wx [ sw | - 2X more compute
:&::::(Sbi = ;::z:g: 2 384 192 384 A 128 128 1388K 7IM = 6_670/0 (VS_ 164%)
dropout (40%) 1x1x1024 [
limcar 1 1 %1000 1 000K M
s ixixio00 | ©
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ResNet
ILSVRC 2015 winner (3.6% top 5 error)

| Researchl 5 3 \weeks of training
Revolution of Depth on 8 GPU machine

AlexNet, 8 layers ; VGG, 19 layers % ResNet, 152 layers

(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

1CCV

Residual block

* Plaint net * Residual net
X X
| weight layer |
any two . :
stacked layers relu F(x) identity
weight layer weight layer X
relu
H(x) Hx)=F(x)+x @

Decision Trees & Bias-Variance Decomposition

Decision Trees
* Make predictions by splitting on features according to a tree structure.

« Split continuous features by checking whether that feature is greater than or less than some threshold.

» Decision boundary is made up of axis-aligned planes.
@ | @
1 Hye @

width > 6.5cm?
S No

Ye

E
S e height > 9.5cm? height > 6.0cm?
S
2 6 | Yes No Yes No
@ - ® Ve
-
4 ° ® oranges ||

A lemons

4 6 8 10
width (cm)

@ Each path from root to a leaf defines a region R,,
of input space
o Let {(z(™), ¢(m)), . (z(m) 1(mi))} be the
training examples that fall into R,,
o Classification tree (we will focus on this):
» discrete output

> leaf value y™ typically set to the most common value in
{t("“), . ,t(mk)}

@ Regression tree:
» continuous output

» leaf value y™ typically set to the mean value in {t(™1) . . ¢(m+)}
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7.1.1 Discrete Features

1.0 — +
>05
0.0 + -
FALSE TRUE
0.0 0.5 1.0

X

@ For any training set we can construct a decision tree that has exactly the
one leaf for every training point, but it probably won’t generalize.

» Decision trees are universal function approximators.

@ But, finding the smallest decision tree that correctly classifies a training
set is NP complete.

@ Resort to a greedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a feature and candidate split that would most reduce the loss.
» Split on that feature and recurse on subpartitions.

@ Which loss should we use?
» Let’s see if misclassification rate is a good loss.
@ How can we quantify uncertainty in prediction for a given leaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

@ The entropy of a loaded coin with probability p of heads is given by

—plogy(p) — (1 — p)logy(1 — p)

8/9
a9 59
L
e 0 1
0 1
8 8 1 I 1 4 4 5 5
—§1082§—§10g2§~§ —§log2§—§log2§~0.99

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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@ Can also think of entropy as the expected information content of a
random draw from a probability distribution.

entropy

1.0
0.8}
0.6
04

0.2

g probability p of heads

@ Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.
@ More generally, the entropy of a discrete random variable Y is given by

=— ) p(y)log, p(y)
yey

e “High Entropy”:

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predictable

7.1.2 Entropy of a Joint Distribution
e Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

HX,Y) = =Y ) p(=,y)log,p(z,y)
zeX yeY
_ 24 4 1,01 25, 2 5, 50
= 7700 2700 100 82700 100 ®27100 100 ®2 100
s 1.56bits

@ What is the entropy of cloudiness Y, given that it is raining?

HY|X=2) = =) p(ylx)log,p(ylz)
yeyY
_ M4, 24 1,001
= Tg5 %2355 " 25 %235
~ 0.24bits
p(z,y)

o We used: p(y|z) = o) and p(z)=>_,p(z,y) (sum in arow)
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@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HY|X) = ) p@HY|X=x)
zeX
1 B 3 "
= ZH (cloudylis raining) + ZH (cloudy|not raining)
~ 0.75 bits

@ Some useful properties:

» H is always non-negative

» Chainrule: H(X,Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X)

» If X and Y independent, then X does not affect our uncertainty
about Y: H(Y|X)=H(Y)

» But knowing Y makes our knowledge of Y certain: H(Y|Y) =10

» By knowing X, we can only decrease uncertainty about Y:
H(Y|X) < H(Y)

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

@ This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of Y and X

IG(Y|X) = H(Y) — H(Y|X)

e If X is completely uninformative about Y: IG(Y|X) =0

e If X is completely informative about Y: IG(Y|X) = H(Y) information gain

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you're on.

7.1.2 Example
@ What is the information gain of split B? Not terribly informative...

B
_ e e|e
ks ® oranges
2 Al® A
[ emons
@ A
width

@ Root entropy of class outcome: H(Y) = —% logQ(%) — %logQ(g) ~ 0.86

@ Leaf conditional entropy of class outcome: H(Y |left) ~ 0.81,
H(Y |right) =~ 0.92
o IG(split) ~ 0.86 — (3 -0.81 + 2 - 0.92) ~ 0.006
HY <- -2/7*log2(2/7)-5/7*1og2(5/7)
HYL <- -3/4*1log2(3/4)-1/4*1log2(1/4)
HYR <- -2/3*1og2(2/3)-1/3*1log2(1/3)
IGS <- HY-(4/7*HYL+3/7*HYR)
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@ What is the information gain of split A? Very informative!

A
o] eoe@
¥ = ® oranges
2 A O Al
2 emons
® A
width

@ Root entropy of class outcome: H(Y) = —2log,(2) — %logz(%) ~ 0.86

@ Leaf conditional entropy of class outcome: H(Y |left) =0,
H(Y|right) ~ 0.97

o IG(split) ~0.86—(2-0+ 2-0.97) ~ 0.17!!

7.1.4 Decision Trees Construction Algorithm
@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a feature to split at a non-terminal node
2. split examples into groups based on feature value
3. for each group:

» if no examples — return majority from parent

> else if all examples in same class — return class
» else loop to step 1

@ Terminates when all leaves contain only examples in the same class or
are empty.

IG(Y) = H(Y) — H(Y|X)

2 2 4 L4
IG(type) =1 — [EH(ym.) + Tz H(Yte) + o5 H(Y|Thai) + ﬁH(ymm.)] =0

2 4 6
IG(Patrons) =1 — [EH(O’ 1)+ EH(1,0) o EH(

2 4

—.2)| = 0.541
6,6)] 0.5
@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

7.1.5 Decision Trees comparison to some other classifiers
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Advantages of decision trees over KNNs and neural nets

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time

@ More interpretable
Advantages of KNNs over decision trees

@ Few hyperparameters

@ Can incorporate interesting distance measures (e.g. shape contexts)
Advantages of neural nets over decision trees

@ Able to handle attributes/features that interact in very complex ways
(e.g. pixels)

@ We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

» E.g., (possibly weighted) majority vote
@ For this to be nontrivial, the classifiers must differ somehow, e.g.

» Different algorithm

» Different choice of hyperparameters

» Trained on different data

» Trained with different weighting of the training examples

e Today, we deepen our understanding of generalization through a
bias-variance decomposition.

» This will help us understand ensembling methods.
7.2 Bias-Variance Decomposition

@ Recall that overly simple models underfit the data, and overly complex
models overfit.

et Emor
»

Tran
Test
— Bayes

@ We can quantify this effect in terms of the bias/variance decomposition.

7.2.1 Basic Setup
@ Recap of basic setup:

» Fix a query point x.
» Repeat:
» Sample a random training dataset D i.i.d. from the data generating
distribution psample.
» Run the learning algorithm on D to get a prediction y at x.
» Sample the (true) target from the conditional distribution p(t|x).
» Compute the loss L(y,t).

@ Notice: y is independent of .
@ This gives a distribution over the loss at x, with expectation E[L(y,t) | x].

@ For each query point x, the expected loss is different. We are interested

in minimizing the expectation of this with respect to x ~ psample-
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7.2.2 Bayes Optimality

For now, focus on squared error loss, L(y,t) = %(y —1)2.

A first step: suppose we knew the conditional distribution p(t|x). What

value y should we predict?
» Here, we are treating ¢ as a random variable and choosing y.

Claim: y, = E[t|x] is the best possible prediction.

Proof:
E((y —)?|x] = E[y* - 2yt +¢*| x]
= y? — 2yE[t | x] + E[t? | x]
= y? — 2yE[t | x] + E[t| x]* + Var[t | x|
= y® — 2yy. + y2 + Var[t | x|
= (y — y)* + Var[t|x]
The first term is nonnegative, and can be made 0 by setting y = y..

The second term corresponds to the inherent unpredictability, or noise,
of the targets, and is called the Bayes error.

» This is the best we can ever hope to do with any learning
algorithm. An algorithm that achieves it is Bayes optimal.
» Notice that this term doesn’t depend on y.

This process of choosing a single value y, based on p(t|x) is an example
of decision theory.

Now return to treating y as a random variable (where the randomness
comes from the choice of dataset).

We can decompose out the expected loss (suppressing the conditioning
on x for clarity):

E[(y — t)*] = E[(y — y«)?] + Var(t)
=E[y? — 2y,y + y?] + Var(t)
= y? — 2u.E[y] + E[y°] + Var(t)
=y? — 2y, E[y] + E[y]* + Var(y) + Var(t)
= (y« — E[y])*> + Var(y) + Var()
bias variance Bayes error
We just split the expected loss into three terms:

» bias: how wrong the expected prediction is (corresponds to
underfitting)

» variance: the amount of variability in the predictions (corresponds
to overfitting)

» Bayes error: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often loosely
use “bias” and “variance” as synonyms for “underfitting” and
“overfitting”.

e Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

0®

Low Bias

High Bias
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Bagging & Boosting
Bias/Variance Decomposition
We treat predictions y at a query x as a random variable (where the randomness comes from the choice of
dataset), ys is the optimal deterministic prediction, t is a random target sampled from the true conditional p(t|x).
E[(y — t)%] = (v« — E[y])* + Var(y) + Var(t)
bias variance Bayes error
>bias: how wrong the expected prediction is (corresponds to underfitting)
>variance: the amount of variability in the predictions (corresponds to overfitting)

>Bayes error: the inherent unpredictability of the targets

Bagging

Motivation
Suppose we could somehow sample m independent training sets from psg.,.. We could then compute the

prediction y; based on each one, and take the average y = iZ’{;l Vi

>Bayes error: unchanged, since we have no control over it
>Bias: unchanged, since the averaged prediction has the same expectation

%i yi| =E[w]

i=1

Ely] =E

: reduced, since we're averaging over independent samples

1w 1< 1
EZ Yi] = WZ Var[y;] = Evar[)’i]
Idea

Solution: given training set D, use the empirical distribution p, as a proxy for psgmpi- This is called bootstrap

Var[y] = Var

aggregation, or bagging.
¢ Take a single dataset D with n examples.
e Generate D new datasets (“resamples” or “bootstrap samples”), each by sampling n training examples

from D, with replacement.
» Average the predictions of models trained on each of these datasets.

e Intuition: As |D| — o, we have pp — Psampie-

IG ‘1‘6 ‘3 train model
oo {..A.AAA}DI__—,y
. . T2 T4 T5 T2 and predict for query
“mv‘”‘M
W
Prediction

m

® I3 T . e e
7 L6 T3 T 3
tc] sample train model
/_.{A....IAZ.}IH Y > wi/m
i=1

and predict for query

® © 0 ¢ 00 Y
and predict for query =

® Te with replacement
A o A
Ts5 )
Samp)
7 m‘ T1 Te T7 T Te T3
®Meng { A } 'Z)3 train model
T4

In thisexamplen =7,m =3

Effect on Hypothesis Space
Bagging can change the hypothesis space / inductive bias:
> x~U(-3,3),t~N(0,1)
> H = {wx|w € {-1,1}}
» Sampled datasets & fitted hypotheses:

N I . . .

B A . . . v | e

./‘ K N / o [ . A .

of . R By M I “ '

Nege '] | #72"% s o N, o
/ A

» Ensembled hypotheses (Enean ovér 1000 samples): '

» The ensembled hypothesis is not in the
original hypothesis space!
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Bagging for Binary Classification
o If our classifiers output z; € [0, 1], then we can average the predictions before
thresholding:
Ybagged = ]](Zbagged > 0-5) = ﬂ(z% > 0.5)

i=1

o If our classifiers output yi € {0, 1}, then we can still average the predictions before

thresholding:
Ybagged = H(z% > 0'5)

i=1
¢ A bagged classifier can be stronger than the average underlying model
Some issues
» Problem: the datasets are not independent, so we don’t get the 1/m variance reduction.
>Possible to show that if the sampled predictions have variance o2, and correlation p, then:

1% 1 .
Var ;Zyi =E(1—p)a + po

i=1

« Solution: Random forests = bagged decision trees, with one extra trick to decorrelate the predictions
>When choosing each node of the decision tree, choose a random set of d input features, and only
consider splits on those features
Boosting

To focus on specific examples, boosting uses a weighted training set.

» Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.
¢ The shifting focus strongly decorrelates their predictions

Weighted Training set
» Key idea: we can learn a classifier using different costs (aka weights) for examples.

¢ Change cost function:
N

N
1
> SR # ™) becomes " wMI{r™) # ™)
n=1

n=1
e Usually require each w™ and ¥¥_,w® = 1.
AdaBoost (Adaptive Boosting)
¢ Given a base classifier, the key steps of AdaBoost are:
1. At each iteration, re-weight the training samples by assigning larger weights to samples
(i.e., data points) that were classified incorrectly.
2. Train a new base classifier based on the re-weighted samples.
3. Add it to the ensemble of classifiers with an appropriate weight.
4, Repeat the process many times.
* Requirements for base classifier:
>Needs to minimize weighted error.
>Ensemble may get very large, so base classifier must be fast. It turns out that any so-called
suffices.
¢ Individually, weak learners (underfit). By making each classifier focus on previous
mistakes, AdaBoost
» Weak learner is a learning algorithm that outputs a hypothesis (e.g., a classifier) that performs slightly better
than chance, e.g., it predicts the correct label with probability 0.51 in binary label case.
e Decision Stump: A decision tree with a single split
AdaBoost Algorithm
e Input: Data Dy, weak classifier WeakLearn (a classification procedure that returns a classifier A, e.g. best
decision stump, from a set of classifiers #¢, e.g., all possible decision stumps), humber of iterations T
* Output: Classifier Hy,

30/ 41


https://zhtc.one/

Copyright 2023 All Right Reserved By TC-tea website

« Initialize sample weights: w{™ =% forn =1, ,N

eFort = 1, ,T
> Fit a classifier to weighted data (h; <« WeakLearn(Dy, w)), e.g.,
he < argmin SN_ w™I{A(x™) # t™}
heH

N

w

N_ R, (x My
» Compute weighted errorerrt=2"'1w (L 1Al

a;- classifier coefficient

g:l wm® ’
e s s 1 1—errs
» Compute classifier coefficient a; = ElogT (e (0,)) 1
t
» Update data weights 0
N ) T O ) I R

e Return H,) = sign(Xi=; ache(x))
» Weak classifiers which get lower weighted error get more weight in the final classifier
Also: w® « w@exp(2a,I{h,(x™) = t™M})
» If erry = 0, a¢ high so misclassified examples get more attention

» If err, = 0.5, a; low so misclassified examples are not emphasized
Dl
,11 D2
+
o ®%e-| | +'4-
+ T - — =
> - + =
+ p—
s + -
€ =0.30
a,=0.42
5 (1 S (i) (i)
i (i, S i) = Train a classifier (using w) = err; = Logmy walflis (x) £ 27} = i
10 10 S5V Py 10
1 1—erry 1. 1
a1 = —log —— = —log(— — 1) = 0.42 = H(x) = sign (a1 h1(x))
2 erry 2 0.3
% &
+
— o = £ =
I —
— - % -
= 10 . I{ ho (x(¥) (4)
9/2‘021 w = updated weights = Train a classifier (using w) = errp = iz will ;(x i =0.21
,=0.65 Tisiwi
1 1—errg 1 1 .
=Sag = —log ——— = — log(—— — 1) & 0.66 = H(x) = sign (aj hy(x) + agha(x))
2 errg 2 0.21
+
+
€3=0.14
(13=0.92
10 ... (i) (#)
w = updated weights = Train a classifier (using w) = errg = L=y willhsx ) #¢77) =0.14
TN, w
1 1—err3 1 | > |
=az = —lo = —log(—— — 1) = 0.91 = H(x) = sign (a1h1(x) + agh2(x) + aghz(x))
2 errg 2 0.14
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H =sign| 0.42 +0.65 +0.92
final
Res-:meg:;ed ........ ohy H(x) = sign (; (1,/1,(;1:))
LA = : |
¥ - . -
w; — w; exp (Q(Itﬂ{ht(x(l)) #* t(')}
=+ =~ Re-weighted _______ i T
= Samples 3
1 i 1—err;
ap = =log | ————
t™7 9 s err;
------- >,L2 T
BEE T, MATURE, MR, ) -
S, wil{h(x® # 40}
erry =
------- i t Y3

AdaBoost Minimizes the Training Error

Assume that at each iteration of AdaBoost the WeakLearn returns a
hypothesis with error err; < % —~forallt=1,...,T with v > 0. The training

error of the output hypothesis H(x) = sign (EL athy (x)) is at most

N
Lu(H) = Y HH®) #19)} < exp (-29°T).
=1

v

 This is under the simplifying assumption that each weak learner is y-better than a random predictor.
» This is called geometric convergence. It is fast!

Generalization Error of AdaBoost
« As we add more weak classifiers, the overall classifier H becomes more “complex”.
» We expect more complex classifiers overfit, if one runs AdaBoost long enough, it can in fact overfit.
« But often it does not! Sometimes the test error decreases even after the training error is zero!

30 20-

25 /\
20| | test " L

‘ 5
15 Y 510
. . o
10 ~.__train 5/\ test
5 i : k

error

. train
10 100 1000
1 10 100 1000
# rounds # of rounds (7)
<Expect> <True situation>

Additive Models
An additive model with m terms is given by:
Hip(x) = X% ajhi(x)
Where (@ @) € Y,
A greedy approach to fitting additive models, known as stagewise training:

1. Initialize Hy(x) = 0
2. Form=1toT:

» Compute the m-th hypothesis H,,, = Hp,—1 + @pphip, i.e. by, and a,y, assuming
previous additive model H,,_1 is fixed:

N

R,y Qi) ¢— argmin L(Hpo1(xD) + ah(x® ; t®
(s am) = argmin 3 £ (Hon-1(x9) + ah(x?), £9)

» Add it to the additive model

i=1

Hp = Hpq + b 32 / 41
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We want to see how the stagewise training of additive models can be done. So, we should consider the exponential
loss:

' (A, Q) < argmin f:exp (— [Hm_l(x(i)) + ah(x(i))] t(i))

heH.a =

Lg(z,t) = exp(—tz) 815 ~

Zexp (—H,,l_l(x(i))t(i)) exp (_ah(x(z))t(z‘))

=1

o [=] -
o un o
3 3
/ ] 3
| 3 3
-
M= 1

w™ exp (—ah(x(i))t(i)) ;
i=1

N
-
Il

Here we defined w{™ 2 exp (—H,,—1(x())t®)) (doesn’t depend on h, @)
] m
Obtain the additive model Hm(®) = Xiz1 @ihi(X) yith;

N
hm ¢ argmin Z wgm]]l{h(x“)) £ 0},
heH

i=1

— Nl (#) (#)
1 1 ; SV by t
a= _-log (ﬂ) : where erry, = Liz1 Wi i (x) ) # },
2 erry, =1 wz(m
i

w1(m+l) — '™ exp (7a1nhyn(x(1))t(1l)) )

Boosting Summary

* Boosting by generating an ensemble of weak classifiers.
¢ Each classifier is trained to of previous ensemble.
e Itis quite , though it can overfit.

Probabilistic Models

Model
o Start with a simple biased coin example:
> You flipacoin N = 100 times and get outcomes {x,...,xy } where x; €
{0,1}and x; = 1lisinterpreted as heads H.
» Suppose you had Ny = 55 heads andNy = 45 tails.
» What is the probability it will come up heads if we flip again? Let’s design a model
for this scenario, fit the model. We can use the fit model to predict the next
outcome.
¢ The coin is possibly loaded. So, we can assume that one coin flip outcome x is a Bernoulli random variable for
some currently unknown parameter 6 € [0, 1].
e It's sensible to assume that{xi, ..., xx" }are Bernoullis.

» Thus the joint probability of the outcome {x1, . . ., xx" } is:
N

p(@1, ..., zn]0) = [[ 6 (1 — )

i=]1
And we can also call it the likelihood function:

N
L(o) =[] o=(1 - 0)'—=
i=1

We usually work with log-likelihoods:
N

00) =Y xilogh + (1 — z;)log(1 — 0)

i=1
* Good values of 8 should assign high probability to the observed data. This motivates the maximum likelihood
criterion, that we should pick the parameters that maximize the likelihood:

Onr, = (0
ML = max (8)
« Setting this to zero gives the maximum likelihood estimate:
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N
a _4 (Zziloga-}-(l—xi)log(l—b’))
i=1

do ~ do
d
= — (Nglog6 + Nrlog(l — 0)) . Ny
do > v =
. Ny Nr Ny + Nt
R B

where Ny =3, z; and Np = N — 3. ;.
* By finding the maximum likelihood we actually minimizing cross-entropies too:

Oy = max £(0)
0€(0,1]

= iy =0

N
— i —il 0— 1—’,‘] 1—9
921[6’,111; zilogf — (1 — z;)log(1 — 0)

* There are two approaches to classification:
* Discriminative approach: estimate parameters of decision boundary/class separator

directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
» Tries to solve: How do | separate the classes?

* Generative approach: model the distribution of inputs characteristic of the class (Bayes
classifier).

» Model p(x]|t)
»> Apply Bayes Rule to derive p(t|x)
» Tries to solve: What does each class “look” like?

» Key difference: is there a distributional assumption over inputs?

Two approaches
A Generative Model: Bayes Classifier

Pr. words given class

sy =20 pd 9l
p(x) p(x)

N~
Pr. class given words

e Problem: specifying a joint distribution over D + 1 binary variables require 2°*! — 1 entries. This is

computationally prohibitive and would require an absurd amount of data to fit.
* We can represent model using an directed graphical model, or Bayesian network:

/%)\

e In a Bayesian network, each node represents a random variable and the arrows represent the
dependencies between the variables. If there is an arrow pointing from node A to node B, then we can
say "node B depends on node A". This dependency is usually expressed in terms of conditional

probabilities.

» The parameters can be learned efficiently because the log-likelihood decomposes into independent terms
for each feature. Each of these log-likelihood terms depends on different sets of parameters, so they can

be optimized independently.
* We predict the category by performing inference in the model, apply Bayes’ Rule:
ol p(Ip(x|c) _ p(c) H]D:lp(%' |c)

Yep(@px[d) Y. p(c) Hf):1 p(zj| )

ple|x) o p(c) _Hp(xj |e)

e For input x, predict by comparing the values of p(c)ﬁ Bl 1) for different ¢ (e.g. choose the largest).
j=1
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¢ Demerit and Merit:
* Naive Bayes is an amazingly cheap learning algorithm!
* Training time: estimate parameters using maximum likelihood

» Compute co-occurrence counts of each feature with the labels.
» Requires only one pass through the data!

* Test time: apply Bayes’ Rule
» Cheap because of the model structure. (For more general models, Bayesian
inference can be very expensive and/or complicated.)

* We covered the Bernoulli case for simplicity. But our analysis easily extends to other
probability distributions.

* Unfortunately, it’s usually less accurate in practice compared to discriminative models
due to its “naive” independence assumption.

MLE issue: Data Sparsity
* Maximum likelihood has a pitfall: if you have too little data, it can overfit.
¢ E.g., what if you flip the coin twice and get H both times?

NH 2

— = =1
Ny+Npr 240

Y

* Because it never observed T, it assigns this outcome probability 0. This problem is known as data sparsity.
Bayesian Parameter Estimation

* In maximum likelihood, the observations are treated as random variables, but the parameters are not.

¢ The Bayesian approach treats the parameters as random variables as well. g is the set of parameters in the

prior distribution of 6.
O —x

 To define a Bayesian model, we need to specify two distributions:

>The p(8), which encodes our beliefs about the parameters before we observe the data.
>The p(D] 0), same as in maximum likelihood.
* When we update our beliefs based on the observations, we compute the posterior distribution using Bayes’ Rule:
For the coin example, our experience tells us 0.5 is more likely than 0.99. One particularly useful that lets us
specify this is the beta distribution (beta distribution Z¥§—ELE N, ©EXEKXE [0,1] £, BHEANESEH a 71 B
REFHIHOTR. ETUEALBRABRERTRESEH 0 HRHEM): N o

w
o
Il

I nu
o U =

['(a+b)

p(8;a,b) = ————~6°71(1 - 9)>1 ’ll —
['(a)'(b) 4)
4
p(0;a,b) x 027 1(1 — B)b_l

3

NN PR O

[T T I T )
o

Socoo!

>The expectation E[0] = a/(a + b) (easy to derive).
>The distribution gets more peaked when a and b are large. 1
>The uniform distribution is the special case where a = b = 1. g

¢ Computing the posterior distribution:
p(0|D) x p(@)p(D|0)

o [0°2 (1 - 0)°] [ (1 — )]
- 6a—1+N”(1 - 0)b—1+N7-'

1.0

(This is just a beta distribution with parameters N; + a and N; + b)
» The posterior expectation of 6 is:

. Ny +a
B9 |1 = Ny + Nr+a+b
(The parameters a and b of the prior can be thought of as )
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The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known

as conjugacy (conjugate priors), and it's very useful.

Small data setting Large data setting
Ng =2, Nr=0 Ny =55, Nr =45

T _ = o .
= Prior —— Prior

25|| — Uikelihood | 8| — Uikelihood
— Posterior 71| — Posterior

%85 0.2 04 0.6 0.8 10

Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely parameter settings under the posterior

3.0

— Prior
— Likelihood
—— Posterior

25

2.0

15

1.0

0.5

0'8.0 0.2 04 0.6 0.8 1.0
Joint probability in the coin flip example:
log p(6, D) = log p(6) + log p(D | 0)

= Const + (a — 1) log @ + (b — 1) log(1 — 0) + Ng log 6 + Nrlog(1 — 0)
= Const + (Ng +a—1)log0 + (N7 + b — 1) log(1 — 6)

Maximize by finding a critical point:

Oriap = argmax p(@|D)

= argmax p(6,D)

_d _Ny+a-1 Nr+b-1
0= 0 log p(8,D) = 7 T—8
- Ng+a-1
Onvap =

N+ Nr+a+b—2
Comparison of estimates in the coin flip example:

Formula Nyg=2,Np =0 Ny = 55, Np = 45

) _Nyg__
OML Nu+Nr 1

E[f|D] —Dute _ ~ 0.67

Ny+Nr+a+b

(=21

+a—1

—» 0 — Npta-1_ _
OMAP Ng+Nr+a+b-2

=0.75

-

k-Means and EM Algorithm

K-means
K-means Objective

Omap assigns nonzero probabilities as longas a,b > 1

= argmax p(6) p(D|[6)

= argmax logp(d) + log p(D | )

2 =0.55
T~
- ~0.548

B0 vy
36 ~0.549

Find cluster centers  {m,}X_, and assignments {r(™3N_, to minimize the sum of squared distances of data points

{x™} to their assigned centers.
+ Datasamplen =1,--,N: X™ € RP (observed),
* Cluster center k = 1,---,K: my, € R (not observed),
+ Responsibilities: Cluster assignment for sample n: r™ € RK 1-of-K encoding
(not observed)

{m;.},{r(™)} {mi}{r(} n=1 k=1

where r;(c") = I[x(™ is assigned to cluster k], i.e., r™ =[0,..,1,..,0] "

N K
min J({mk}1 {r(n)}) = min Z Z Tf(cn)”mk e x(n) ||2

(NP-hard problem)
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So, the is:

K
min Z Zrk )||mk x™||2

{mk} {l‘(”)} =1 k=

J

-
distance between z()
and its assigned cluster center

« since ™ = I[x™is assigned to cluster k], i.e., r® = [0, -+, 1,--+,0]"
* inner sum is over K terms but only one of them is non-zero.
* E.g.say sample x™ s assigned to cluster k = 3, then
=1[0,0,1,0,...]
K
> il lm — x|[2 = | jmg — x| 2

k=1
Problem is hard when minimizing jointly over the parameters {m,}, {r(}. But if we fix one and minimize over
the other, then it becomes easy. Also, it doesn't guarantee the same solution.

K
min Y 7" ||my — x|
r(n) =1

Assign each point to the cluster with the nearest center. E.g. if x™ is assigned to cluster k.
) =o,0,...,1,...,0]

r e Ly sian
—_—  ————

(n) _ [ 1 if k= argmin, [x™ — m,||?
0 otherwise Only k-th entry is 1

Alternating Minimization
« Likewise, if we fix the assignments {r(™} then can easily find optimal centers {m;}

» Set each cluster’s center to the average of its assigned data points: Forl = 1,2, ..., K

9 N K
0 =gy Do 27 Il = x|°

n=1k=1

N (n) o (n)
n r, X
=2 g rl( )(ml -x) — m= 2T X" &
= 2.m™

* Let’s alternate between minimizing J ({my}, {r(}) with respect to {m; } and {r™}
* This is called alternating minimization

K-means Algorithm
Initialization: Set K cluster means my, ...,
Repeat until convergence (until assignments do not change):

>Assignment: Optimize J w.r.t. {r}: Each data point x( assigned to nearest center and Responsibilities
(1-hot or 1-of-K encoding) /

mk to random values

K = argmin jm;. — x| ri” =Ik™ =k for k=1,..K

>Refitting: Optimize J w.r.t. {m}: Each center is set to mean of data assigned to it

'r Mx ()
M = 2ol X7 T
Zn Tk

1000

J

500

- o o 2
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21 (@) N 2} (@) 2N

[ @ ’ i ) ’ [

%. N\ \ % % A bad local optimum
Q: How can we reduce the local minima? )
A: By try many random starting points.
Soft K-means Algorithm
« Instead of making hard assignments of data points to clusters, we can make soft assignments. One cluster may
have a responsibility of .7 for a datapoint and another may have a responsibility of . 3.
« Initialization: Set K means {m«} to random values
« Repeat until convergence (measured by how much J changes):
>Assignment: Each data point n given soft “degree of assignment” to each cluster mean k, based on
responsibilities

L _ _expl=Bllmy — x|
¢ T 5, exp[—Bllm; — x|

= r(™ = softmax(—A{||my — x™ |2} )

>Refitting: Model parameters, means, are adjusted to match sample means of datapoints they are
responsible for

()4 (n)
m; = 72?% Tk 7
Zn Ti
Multivariate Data
1 1 1
[x(l)]T .1'(1 ) .Ié ) 1:(1?)
« Multiple measurements (sensors) [x®]T «? 2P ... P
e D inputs / features / attributes = : =1 & ; .
* N instances / observations / examples [x(M)T P AL AU )
Multivariate Mean and Covariance
* Mean
1
p=Ex=|:
Hd
* Covariance
‘7% 012 S 01D
- o12 03 -+ 02D
¥ =Cov(x) =E[(x—p)(x—p) '] =
op1 Op2 - 02D

* The statistics (¢ and X) uniquely define a multivariate Gaussian (or multivariate
Normal) distribution, denoted NV (i, X) or V' (x; u, X)
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Multivariate Gaussian Distribution
* Normally distributed variable x~N (u, £) has distribution:

il

p(x) = @n)P[2 —l(X—H)Tz_l(X—#)

exp >

* We'll be working with the following generative model for data D
* Assume a datapoint x is generated as follows:

» Choose a cluster z from {1,...,K} suchthatp(z = k) = my
» Given z, sample x from a Gaussian distribution V' (x|u,, I)

e (Can also be written:
p(z=k)=m
p(x|z = k) = N(x|py, I)

Fitting GMMs: Maximum Likelihood
Maximum likelihood objective:

log p(D) = Zlogp(x("’) = Zlog (Z meN (x| gy, I))

n=1

* Observation: if we knew z(™ for every x™(i.e. our dataset was Deomplete =

{(z("),x("))}:=1) the maximum likelihood problem is easy:

N
lng(Dcomplete) = Z IOg p(z(n) 3 x(n))

n=1

N
= Z log p(x™|2(™) + log p(2™)

VoK
22 3 T = (log ATy ) + og )

* By maximizing logp(l)complete) we would get this:

N
I[z(" = k] x™)
B = Z":]{, 2 I = class means
2on=1 L[z = K]
1
fig = N Z I[z(™) = k] = class proportions
n=1

* We haven’t observed the cluster assignments z™, but we can compute p(z(")lx("))
using Bayes rule
* Conditional probability (using Bayes rule) of z given x

p(z = klx) =

p(z = k)p(x|z = k)

> p(z = j)p(x|z = 5)
_ MmN &)
Yiea N (x|pj, T)
EM Algorithm
EM Algorithm
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* This motivates the Expectation-Maximization algorithm, which alternates between

two steps:

1. E-step: Compute the posterior probabilities r = p(z(") k|x™) our current model - i.e. how

much do we think a cluster is responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the parameters, assuming 7 r™

it is currently responsible for.

95
. 05 0.5 " U
95
5 .
[ ] [}
5 5
X - ;
i °

* Initialize the means fi;, and mixing coefficients 7,
* Iterate until convergence:

» E-step: Evaluate the responsibilities 7, r™

N (" )|I""kaI) _ Feexp{—z[x™ — %}

given current parameters

are held fixed-
change the parameters of each Gaussian to maximize the probability that it would generate the data

(n) _ (n) _ (n)y _
r, . =p(2" =kx\") = - - = -
S RN ™R, T T A exp{—FlIx™ — @1]|2}

» M-step: Re-estimate the parameters given current responsibilities

1 N
Be = S
n=1
N
2 N 3
T = Wk with Nk:ZT;(cn)

n=1
» Evaluate log likelihood and check tor convergence

N K
logp(D) = ) _ log (Z AN (™), I))
n=1 k=1

Review
* The maximum likelihood objective ¥ N_; logp(x(™)was hard to optimize
* The complete data likelihood objective was easy to optimize:

N N K
> logp(z™,x™) =" "1z = k] (log N (x™ |y, T) + log )
n=1 n=1 k=1

* We don’t know z(™’s (they are latent), so we replaced I[z™ = k] with responsibilities
i = p(a® = kix®™)

« Thatis: we replaced I[z(™ = k| with its expectation under p(z™|x(™) (E-step).

* We ended up with the expected complete data log-likelihood:

5 E, ooy o (47, Z ™ (1og N (x|, T) Hog )

n=1 n=1 :
which we maximized over parameters {my, iy }x(M-step)
* The EM algorithm alternates between

> The E-step: computing the 1 = p(z™ = k|x™) (i.e., expectation
E[1[z™ = k]|x™]) given the current model parameter 1y, py

» The M-step: update the model parameters my, i to optimize the expected
complete data log-likelihood
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» The K-Means Algorithm:
1. Assignment step: Assign each data point to the closest cluster.

2. Refitting step: Move each cluster center to the average of the data assigned to it.
» The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current model.
2. M-step: Maximize the probability that it would generate the data it is currently responsible for.
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